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CHAPTER 0

Preface

Homological algebra has become a very important tool in many mathematical ar-
eas. In algebraic geometry, its language has contributed to a good understanding of
many complex phenomena, like for example Serre duality. Coherent cohomology theory
replaces the study of an algebraic variety X (or more generally a noetherian scheme)
by the study of derived functors on Coh(X), the category of coherent sheaves on X.
Its objects are often easier understood than X itself and in this sense, this approach
provides a simplification. A more natural framework for the study of derived functors
is Db(X), the bounded derived category of coherent sheaves on X which is obtained
from Coh(X) by a general procedure which can be applied to any “suitable” (abelian)
category. Its objects are chain complexes of objects from Coh(X). When passing from
Coh(X) to Db(X), we apply another simplification in the sense that two non-isomorphic
chain complexes with objects in Coh(X) may become isomorphic as objects in Db(X)
(in fact, any exact sequence becomes isomorphic to zero in Db(X)!). Thus, the first part
of this thesis comes as a small surprise: even though Db(X) could be considered a “sim-
pler” mathematical object than X itself, it still determines X up to isomorphism, if we
place a (not too strong) simplicity condition on X. This is Bondal and Orlov’s theorem,
for which we give a detailed proof in the first part of this thesis, as, in some sense, it
forms the base for our further work: from the theorem’s point of view, it seems a natural
question if we can do algebraic geometry by forgetting about the varieties and schemes
involved and just looking at categories that are of the same “type” as Db(X). A pos-
sible framework for these considerations is provided by tensor-triangulated categories.
In the second part of this thesis, we try to define analogies of geometrical constructions
for these categories (Chow groups, Hilbert polynomials, products) and we prove that
our constructions recover the original geometrical ones, in the case that our categories
come from varieties (or suitable schemes). This takes place in chapter 3 and 4 of this
document and the focus lies on the Chow group of a variety, which is a basic tool for
dealing with subvarieties of the variety and for intersection theory.

This thesis started as an attempt to thoroughly understand the theorem by A. Bon-
dal and D. Orlov mentioned above, which states that a smooth algebraic variety with
(anti-)ample canonical bundle is determined up to isomorphism by its derived category
of coherent sheaves as a graded category. The proofs given in Bondal and Orlov’s orig-
inal paper and in Huybrechts’ account turned out to be interesting itself: we can find
numerous attempts there to “geometrize” the derived categories involved, i.e. attempts
to carry over geometric concepts to a category theoretic setting. Therefore, it seemed
natural to ask how much geometric structure derived categories - or more generally tri-
angulated categories - were carrying in general. A partial answer to this question is
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Chapter 0

given by the work of Hopkins, Neeman and Thomason, who proved that closed sub-
varieties of an algebraic variety correspond bijectively to certain thick subcategories of
Dperf(X), the derived category of perfect complexes on X. From this starting point,
Balmer succeeds to associate to every tensor-triangulated category K a locally ringed
space Spec(K) that is isomorphic to X in case that K = Dperf(X) for some algebraic
variety X. In the light of these results we therefore try to define the Chow group of an
arbitrary tensor-triangulated category that reconstructs the Chow group of X in case
that K = Dperf(X) for some algebraic variety X. We are even able to define a partial
intersection product on certain subcategories of K. In general, our constructions depend
very much on Balmer’s ringed space construction, and therefore the amount of analogies
we can find between (algebraic) geometry and tensor-triangulated categories is some-
what constrained by the amount of theory we can generalize from schemes to arbitrary
locally ringed spaces.

The document at hand has the following structure: the first part (chapters 1 and 2)
is dedicated to the derived category of coherent sheaves on a smooth projective variety
with ample canonical bundle. This means that we will give a (sometimes very) brief
review of most of the geometry and homological algebra needed and then give a proof of
Bondal and Orlov’s theorem following Huybrechts’ account. In the second part (chapters
3 and 4) we give an overview of the theory established by Balmer that we need and we
present the following new results:

• We define Chow groups for certain tensor-triangulated categories.
• We give an outlook to a possible intersection theory defined on these categories.
• We define Hilbert functions, the arithmetic genus and a “geometric product”

of certain tensor-triangulated categories.

This new part of the theory gives rise to some interesting and (as of now) unresolved
problems. Specifically, we want to mention conjecture 4.5 from chapter 3 and its analogue
for intersection multiplicities. In the same context, it would be desirable to have an ana-
logue of Chow’s moving lemma that works for the Chow group of a tensor-triangulated
category K as defined in chapter 3, as this could ultimately lead to a full intersection
theory on K.
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CHAPTER 1

Preliminaries

The reader will need a good understanding of basic modern algebraic geometry, i.e.
he should be familiar with the basic theory of schemes and the associated commutative
algebra. Chapter II of [Har77] provides a good background and throughout the text,
we will try to stick to the notation introduced there. Furthermore, we require a basic
knowledge on category theory and sheaf cohomology, a general acquaintance with homo-
logical algebra will be useful as well. In the following we will first look at some notions
of algebraic geometry that are used less frequently in [Har77] and recall some facts that
are central for our work. Then, we will give a short overview of derived and triangulated
categories, which are the central objects we study in this thesis. Finally, we will recall
some facts from homological algebra we need and have a closer look at some properties
of the derived category of coherent sheaves on a smooth projective variety. As a last
reminder, we will very quickly go over spectral sequences as we need them several times
when proving Bondal and Orlov’s theorem.

1. Algebraic geometry recap

We begin with some very basic notions that we will use frequently throughout the
text. We already assume some familiarity with these concepts, so we will not go into
details everywhere.

Definition 1.1. Let X be a topological space. A non-empty, closed subset Y ⊂ X
is called irreducible if it is not the union of two proper closed subsets of X. If X is
irreducible, the dimension of X is defined as

dim(X) = max
n
{Chains of irreducible subspaces X0 ( X1 ( . . . ( Xn = X}

Definition 1.2. Let X be a topological space, A,B sheaves of abelian groups on X.
Then we define the sheaf of local homomorphisms Hom(A,B) on X by

U 7→ Hom(A|U , B|U )

Remark: It is clear that Hom(A,B) is a presheaf, with restriction maps the natural
restriction of homomorphisms of sheaves. It is also a sheaf: let U ⊂ X be open and
{Vi} be an open covering of U . First assume that we’re given s ∈ Hom(A,B)(U) =
Hom(A|U , B|U ) such that s|Vi = 0 for all i, i.e. s ◦ ρAi = 0, where ρAi is the restriction
map A(U) −→ A(Vi). As s is a morphism of sheaves, this means that we also have
ρBi ◦ s = 0 for all i. Now let a ∈ A(U) be arbitrary and consider s(a) ∈ B(U). We
have that ρBi (s(a)) = 0 for all i, which means that s(a) = 0 as B is a sheaf. This
proves that s = 0. Next, assume we are given elements si ∈ Hom(A|Vi , B|Vi) such that
si|Vj∩Vi = sj |Vj∩Vi for all i, j. Now we define a map s : A(U) −→ B(U) in the following
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1. ALGEBRAIC GEOMETRY RECAP Chapter 1

way: let a ∈ A(U) then define bi := si ◦ ρAi (a). Then for each Vi, we get a bi ∈ Vi
and by definition of the si and the fact that they commute with the restriction maps
we must have bi|Vj∩Vi = bj |Vj∩Vi for all i, j. As B is a sheaf, there is a unique element
b ∈ B such that b|Vi = bi. If we set s(a) = b we can check that this gives a well-defined
homomorphism of sheaves and we see that Hom(A,B) is indeed a sheaf. It is easy to
see that if we replace the sheaves of abelian groups by sheaves of modules, rings etc. the
sheaf of local homomorphism becomes a sheaf in the corresponding category.

A definition which will be useful when working with points of a scheme is the fol-
lowing:

Definition 1.3. Let X be a topological space, P ∈ X and A an abelian group. The
skyscraper sheaf iP (A) of A at P on X is given by the assignment

U 7→

{
A if P ∈ U
0 if P /∈ U

This is a sheaf as well: it is clear that iP (A) is a presheaf with restriction homomor-
phisms either the identity map or the zero map. It is also a sheaf: let U ⊂ X be open
and {Vi}i∈I an open covering of U , s ∈ iP (A)(U). Assume that s 6= 0, i.e. P ∈ U . Then
for some j, we have P ∈ Vj and therefore s|Vj 6= 0. This implies that if s|Vi = 0 for all
i ∈ I then we must have s = 0. Furthermore, if we have U ⊂ X open, {Vi} an open
covering of U and elements si ∈ iP (A)(Vi) for each i, with the property that for each i, j
we have si|Vi∩Vj = sj |Vi∩Vj , then we need to show that there is an element s ∈ iP (A)(U)
such that s|Vi = si for all i. But clearly, the conditions on the intersections, together
with the fact that the restriction maps are either the identity map or the zero map,
imply that si = sj = s for all j and thus if we pick s = si for some i, we get our desired
element.

Skyscraper sheaves are important for the first part of this thesis, as they represent
points on the projective variety X in the derived category Db(X). One type of skyscraper
sheaves that will be used extensively is the next one:

Definition 1.4. Let (X,OX) be a scheme and x ∈ X a closed point. The sheaf k(x)
is the skyscraper sheaf ix(OX,x/mx), where OX,x is the local ring at x and mx is its
maximal ideal.

Remark 1: Most of the time we will be working with schemes of finite type over an
algebraically closed field k, and thus we have OX,x/mx = k for all closed points x ∈ X.
Indeed, in this case every point x ∈ X is contained in an open Spec(B), where B is a
finitely generated k-algebra and for x closed, OX,x ∼= B(m), where m ⊂ B is the maximal
ideal corresponding to x. We have B(m)/m ∼= B/m which is a finite-dimensional k-vector
space due to Hilbert’s Nullstellensatz. As k is algebraically closed, this implies the claim.

Remark 2: In the following, we will always consider k(x) as a sheaf of OX -modules.
This works in the following way: if x /∈ U ⊂ X, then k(x)(U) = 0, so it is an OX(U)-
module in the trivial sense. If x ∈ U , s ∈ OX(U) and a ∈ k(x)(U) = OX,x/mx, define
s · a := πx(sx) · a, where sx is the stalk of s at x and πx : OX,x −→ OX,x/mx is the
natural projection map.

We will prove several more statements for skyscraper sheaves in the following:
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Chapter 1 1. ALGEBRAIC GEOMETRY RECAP

Proposition 1.5. Let X be a topological space and assume x 6= y ∈ X are two distinct
closed points. And let ix(A) be a skyscraper sheaf in x and iy(B) be a skyscraper sheaf
in y. Then Hom(ix(A), iy(B)) = 0.

Proof. Consider the sheaf of local homomorphisms Hom(ix(A), iy(B)), then

Hom(ix(A), iy(B)) = Γ(X,Hom(ix(A), iy(B)))

Define the open subsets U = X \ {x} and V = X \ {y}. Then we have

Hom(ix(A), iy(B))|U = 0

and

Hom(ix(A), iy(B))|V = 0

and thus for any f ∈ Γ(X,Hom(ix(A), iy(B))) = Hom(ix(A), iy(B)) we have f |U = 0
and fV = 0. As U∪V = X and Hom(ix(A), iy(B)) is a sheaf, this means that f = 0. �

A nice description for the global sections of a sheaf of OX -modules is given by the
following lemma:

Lemma 1.6. Let F be a sheaf of OX-modules on a scheme X. Then Γ(X,F) =
Hom(OX ,F).

Proof. First, assume that we have a homomorphism of OX -modules f : OX −→ F .
Then for each U ⊂ X, f(U) is completely determined by the image of 1 ∈ OX(U) in
F : indeed, for all a ∈ OX(U), we have f(U)(a) = af(U)(1). Thus, we get a mor-
phism of OX(X)-modules φ : Hom(OX ,F) −→ Γ(X,F) by mapping f 7→ f(X)(1).
On the other hand, assume that we are given some a ∈ F(X). Then we can define
a morphism of OX(X)-modules ψ′ : F(X) −→ HomOX(X)(OX(X),F(X)) by putting
a 7→ (f ′ : OX(X) −→ F(X), f ′(1) = a). Notice that f ′ extends to a unique mor-
phism of OX -modules f : OX −→ F in the following way: for each U ⊂ X, f(U)
is determined by f(U)(1), but we have that f(U)(1) = f(U)(ρXU (1)) = ρXU (f(X)(1)),
where the first equality follows from the fact that the restriction maps of OX are
ring-homomorphisms which send 1 to 1. In this way ψ′ induces a map of OX(X)-
modules ψ : Γ(X,F) −→ Hom(OX ,F) which is clearly inverse to φ. Thus, Γ(X,F) and
Hom(OX ,F) are isomorphic as OX(X)-modules. �

The next definition gives a reminder of the notion of a coherent OX -module on a
scheme X. For the ∼-construction, see [Har77, p.111]

Definition 1.7. Let (X,OX) be a scheme. A sheaf of OX-modules F is called quasi-
coherent if X can be covered by finitely many open affines Spec Ai =: Ui such that

F |Ui = M̃i, where the Mi are Ai-modules. If the Mi are finitely generated, then F is
called coherent.

A simple example of a coherent sheaf is the following:

Proposition 1.8. Let X be a noetherian scheme and x ∈ X be a closed point. Then
the skyscraper sheaf k(x) is a coherent sheaf of OX-modules.
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1. ALGEBRAIC GEOMETRY RECAP Chapter 1

Proof. The coherence of k(x) follows from [Har77, III.8.8.1] as the inclusion i :
{x} −→ X is a closed immersion of noetherian schemes, which is a proper morphism by
[Har77, II.4.8]: indeed, we can view k(x) as the structure sheaf O{x} of the the singleton
{x}, which is coherent. Then k(x) = i∗(O{x}).

�

Coherent sheaves are used extensively for cohomology theory on schemes, and so
we will later look at the derived category of coherent sheaves on a smooth projective
variety. The main objects we will consider in the following are smooth (non-singular)
algebraic varieties. Therefore we briefly recall the notion of the canonical bundle of a
scheme (which is rather technical and we just state it for completeness’ sake).

Definition 1.9. Let Y be a closed subscheme of a scheme X and let i : Y −→ X
be the inclusion morphism. The ideal sheaf of Y , JY , is the kernel of the morphism
i# : OX −→ i∗OY .

Definition 1.10. Let X be a scheme over k of dimension n, and ∆ : X −→ X ×k X
be the diagonal morphism. Then ∆(X) is a closed subscheme of an open subset W ⊂
X ×k X. Let J be the sheaf of ideals of ∆(X) in W . Then the sheaf of relative
differentials of X over k on X is defined as ΩX/k := ∆∗(J /J 2). If X is non-singular,

then we define the canonical sheaf or canonical bundle ωX of X as
∧n ΩX/k.

Remark: For the pull-back construction ∆∗, see [Har77, II.5]. We can also define
the sheaf of differentials in the following way: cover X with open affines Ui := Spec Ai,

then define ΩX/k|Ui := Ω̃Ai/k and glue all these sheaves together to obtain the sheaf
ΩX/k. Here, ΩAi/k is the module of relative differential forms of Ai over k (cf. [Har77,
II.8.9.2]).

ΩX/k is especially well-behaved for non-singular varieties, i.e. for varieties over an
algebraically closed field k such that all its local rings are regular local rings.

Theorem 1.11. Let X be an irreducible separated scheme of finite type over an alge-
braically closed field k. Then ΩX/k is a locally free sheaf of rank n = dim X if and only
if X is a non-singular variety over k.

Proof. For a proof see [Har77, II.8.15] �

Thus, we have in particular:

Corollary 1.12. Let X be smooth projective variety over an algebraically closed field k.
Then ωX is an invertible sheaf (i.e. locally free of rank 1).

Proof. Let x ∈ X be a point. Then ωX,x =
∧n(ΩX/k)x. By the previous theorem

this is a free OX,x-module of rank 1, which is equivalent to ωX being invertible in an
open neighbourhood of x. As x was chosen arbitrarily, this proves the claim. �

Definition 1.13. Let X be a noetherian scheme. The support of a coherent sheaf of
OX-modules F is defined as supp(F) := {x ∈ X|Fx 6= 0}. It is a closed subset of X.

Proof. We want to prove that supp(F) is closed. We can prove this locally (as a
set that is closed in each part of an open covering is globally closed), i.e. reduce it to

the situation, where X = Spec(A) is affine. Then we can write F = F̃ , where F is some
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Chapter 1 1. ALGEBRAIC GEOMETRY RECAP

finitely generated A-module. Then we have that supp(F) = V (Ann(F )): indeed, let
p ∈ V (Ann(F )) which means that p is a prime ideal in A that contains Ann(F ). Now
look at Fp and assume that Fp = 0. This implies that for all generators fi ∈ F there
are elements ai ∈ A \ p such that aifi = 0. Then we have that (

∏
i ai)f = 0 for all

f ∈ F and thus (
∏
i ai) ∈ Ann(F ) but also (

∏
i ai) ∈ A \ p which is a contradiction. For

the other implication, take p ∈ supp(F), then Fp 6= 0. This implies that Ann(F ) ⊂ p.
Indeed, assuming the opposite yields an element a /∈ p such that aF = 0 which implies
that Fp = 0, a contradiction. This finishes the proof. �

The next lemma gives a nice characterization of sheaves with small support, and will
be used several times for the proof of Bondal and Orlov’s theorem:

Lemma 1.14. Let F be a sheaf of OX-modules with supp(F) = {x} a closed point in
X. Then F is a subsheaf of the skyscraper sheaf ix(Fx).

Proof. We use the fact that as F is a sheaf, its sheafification F+ (cf. [Har77,
II.1.2]) is isomorphic to F itself. Thus look at the sheafification F+, then F+(U) is the
set of functions s : U −→

∐
P∈U FP subject to two conditions:

(1) for each P ∈ U , we have s(P ) ∈ FP
(2) for each P ∈ U , there is a neighbourhood V 3 P, V ⊂ U and t ∈ F(V ) such

that for all Q ∈ V we have tQ = s(Q)

Now we have two cases: if x /∈ U , then
∐
p∈U Fp is trivial and therefore the set of

functions s : U −→
∐
p∈U Fp is trivial. If x ∈ U , then the first condition says that

s(P ) ∈ FP for all P ∈ U . Thus as FP = 0 for P 6= x, s is completely determined by the
image s(x) ∈ Fx. Therefore, we can identify F(U) with a subset of S ⊂ Fx.

It remains to prove that F(V ) = S for every open V ⊂ X such that x ∈ V . Thus,
let V1, V2 ⊂ X be two opens containing x and let s ∈ F(V1). For each P ∈ V1, we
have s(P ) ∈ FP which means that we can extend s to a function s̃ : V2 −→

∐
P∈V2 FP

by setting s̃(P ) = 0 for P 6= x and s̃(x) = s(x). In order to see that s̃ ∈ F(V2), we
need to check that for every point P ∈ V2, there is a neighbourhood W 3 P,W ⊂ V2
and t ∈ F(W ) such that for all Q ∈ W we have tQ = s(Q). For P 6= x, this is trivial,
for P = x, we know that there is a neighbourhood W ′ ⊂ V1 and a section t′ ∈ F(W ′)
with the desired property. Now take W = W ′ ∩ V2 and t := t′|W ′∩V2 ∈ F(W ) to get the
neighbourhood and the section that we needed and see that s̃ ∈ F(V2). By the very same
argument we see that every element t ∈ F(V2) gives rise to an element t̃ ∈ F(V1). As
we have seen before, elements of F(U) are determined completely by their value at x for
any open U containing x and thus we can check easily that the two processes described
above are inverse to each other. This finishes the proof. �

The next two observations provide some category-theoretic background we need:
first recall that for X = Proj(S) and M a graded S-module, there is a associated sheaf

of OX -modules M̃ on X. (Note that there is some abuse of notation here: for an affine
scheme Spec(A) and an A-module N , we denote the OSpec(A)-module associated to N

also by Ñ . However, it should be clear from the context which construction is meant.)
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Theorem 1.15. Let X = Proj(S) be a projective variety over k. Denote by F the
functor X 7→

⊕
nH

0(X,OX(n)) from projective schemes over k to finitely generated k-
algebras and by Proj the functor A 7→ Proj (A) from graded rings to projective schemes.
Then Proj ◦ F = id.

Proof. Recall that OX(n) := OX ⊗ O(n) where O(n) = S̃(n). Consider S as

an S-module, then have that S̃ ∼= OX . Now by [Har77, II, Exercise 5.19] there is a

natural graded homomorphism S −→ Γ∗(S̃) = Γ∗(OX) =
⊕

nH
0(X,OX(n)) which is

an isomorphism in all degrees ≥ k for some k ∈ Z. By [Har77, II, Exercise 2.14] this
implies that X = Proj(S) = Proj(

⊕
nH

0(X,OX(n))) = Proj(F (X)) = Proj ◦ F (X)
which shows the claim. �

The next theorem is important as it implies that the category of coherent sheaves
on a projective scheme X over k is Hom-finite and will eventually imply the same for
the category Db(X) (which we will define later).

Theorem 1.16. Let X be a projective scheme over k and let A,B be two coherent
OX-modules. Then Hom(A,B) is a finite-dimensional k-vector space.

Proof. Consider the sheaf of local homomorphisms H := Hom(A,B). We can cover

X with open affines Spec(Bi) such that B|Spec(Bi) = M̃i for some finitely generated Bi-

module Mi. Then by [Har77, II.5.4], we have that A|Spec(Bi) = Ñi for some finitely gen-
erated Bi-module Ni. Thus we have that H(Spec(Bi)) = Hom(A|Spec(Bi),B|Spec(Bi)) =

Hom(Ñi, M̃i) = Hom(Ni,Mi) by [Har77, II.5.5]. This also shows that H|Spec(Bi) =

˜Hom(Ni,Mi). But as Ni,Mi are finitely generated, Hom(Ni,Mi) is a finitely generated
Bi-module. This proves that H is a coherent sheaf on X. Now, by [Har77, II.5.19]
Hom(A,B) = Γ(X,H) is a finite-dimensional k-vector space. �

The following lemma helps us when dealing with Zariski tangent vectors of a variety
in a point. It makes it possible to rephrase the conditions of a locally free sheaf separating
points and tangent vectors in a convenient way (cf. Lemma 1.19).

Definition 1.17. Let X be a scheme over an algebraically closed field k. For any x ∈ X,
let mx be the maximal ideal of the local ring at x. The Zariski tangent space Tx to X at
x is the dual of the k-vector space mx/m

2
x.

Lemma 1.18. Let X be a smooth projective variety and x ∈ X. Then there is a bijection
between closed subschemes Z concentrated in x with structure sheaf of the form k[ε]/(ε2)
and the Zariski tangent vectors at x, i.e. elements of Tx.

Proof. (This is [Har77, Exercise II.2.8].) Let Z be closed subscheme concentrated
in x with structure sheaf k[ε]/(ε2). Let f# : OX −→ OZ be the surjection induced by

the inclusion Z ↪→ X. In particular, we have a surjective map f#x : OX,x −→ k[ε]/(ε2).

The maximal ideal of k[ε]/(ε2) is (ε) and as f#x is a ring homomorphism, (f#x )−1((ε))
will be a maximal ideal in OX,x, which means that it must be equal to mx. This also

shows that m2
x ⊂ ker(f#x ) and thus f#x factors as OX,x � OX,x/m2

x � k[ε]/(ε2) and we
can restrict it to a map mx/m

2
x � k · ε ∼= k which is obviously an element of (mx/m

2
x)∨.
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Chapter 1 1. ALGEBRAIC GEOMETRY RECAP

Thus, we see that Z, together with its embedding in X, determines a tangent vector at
x.

On the other hand, let f ∈ (mx/m
2
x)∨ be a tangent vector at x ∈ X. Define a closed

subscheme structure on x in the following way: set OZ := k[ε]/(ε2) and denote by f the
inclusion of the point x ∈ X. We need to give a surjective homomorphism of sheaves f# :
OX −→ i∗(OZ). This is equivalent to giving a surjective ring homomorphism OX,x −→
k[ε]/(ε2). As we’ve seen before such a morphism will factor as OX,x � OX,x/m2

x −→
k[ε]/(ε2). By assumption, we have a linear map f : OX,x/m2

x ⊃ mx/m
2
x −→ k. We will

extend this map to a ring homomorphism f̂ : OX,x/m2
x −→ k[ε]/(ε2) in the following

way: denote by π : OX,x/m2
x −→ OX,x/mx = k ⊂ OX,x the natural projection and

notice that for all a ∈ OX,x we have that a − π(a) ∈ mx/m
2
x. Indeed, π(a − π(a)) =

π(a)− π2(a) = π(a)− π(a) = 0 and thus a− π(a) ∈ ker(π) = mx/m
2
x. Now define

f̂(a) = π(a) + f(a− π(a))ε

This is a ring homomorphism: additivity is clear, as both π and f are additive. Now,
let a, b ∈ OX,x. Then

f̂(ab) = π(ab) + f(ab− π(ab))ε

= π(a)π(b) + f(ab− π(a)π(b))ε

and

f̂(a) · f̂(b) = (π(a) + f(a− π(a))ε)(π(b) + f(b− π(b))ε)

= π(a)π(b) + π(a)f(b− π(b))ε+ π(b)f(a− π(a))ε+ f(a− π(a))f(b− π(b))ε2

= π(a)π(b) + π(a)f(b− π(b))ε+ π(b)f(a− π(a))ε as ε2 = 0

which means

f̂(ab)− f̂(a) · f̂(b) = f(ab− π(a)π(b))ε− π(a)f(b− π(b))ε− π(b)f(a− π(a))ε

= f(ab− π(a)π(b))ε− f(π(a)(b− π(b)))ε− f(π(b)(a− π(a)))ε

= f(ab− π(a)π(b))ε− f(π(a)(b− π(b)) + π(b)(a− π(a)))ε

= f(ab− π(a)π(b))ε− f(π(a)b+ π(b)a− 2π(a)π(b))ε

= f(ab− π(a)π(b)− π(a)b− π(b)a+ 2π(a)π(b))ε

= f(ab− π(a)b− π(b)a+ π(a)π(b))ε

= f((π(a)− a)(π(b)− b))ε
= f(0)ε = 0 as (π(a)− a)(π(b)− b) ∈ (mx/m

2
x)2 = 0

As the two process described above are clearly inverse to each other, this finishes the
proof. �

As a last statement, we need a little technicality concerning very ample line bundles,
which we will use for the proof of Bondal and Orlovs’s theorem. Essentially, this is a
reformulation of [Har77, II, Proposition 7.3] in terms of surjectivity conditions on the
restriction maps.

9
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Lemma 1.19. Let X be projective scheme over an algebraically closed field and let F
be an invertible sheaf on X. Then F is very ample if and only if

(a) for any two distinct closed points P,Q ∈ X, the restriction map

F −→ FP /mPFP ⊕FQ/mQFQ ∼= k(P )⊕ k(Q)

induces a surjection ϕ : Γ(X,F) −→ Γ(X, k(P )⊕ k(Q)).
(b) Let P ∈ X, y ∈ (mP /m

2
P )∨ be any tangent vector. Then the map Γ(X,F) −→

Γ(X, i∗(OP,y)) induced by the restriction F −→ FP is surjective. Here OP,y is the
structure sheaf of the closed subscheme concentrated in P associated to the tangent
vector y.

Proof. Let F be very ample, i.e. F ∼= i∗(O(1)). We will make use of the fact that
F is very ample if and only if it separates points and tangent vectors (cf. [Har77, II,
Proposition 7.3]). As F separates points, we know that for any two distinct close points
P,Q ∈ X we have a global section s such that sP ∈ mPFP but sQ /∈ mQFQ, or vice
versa. Next, let (a, b) ∈ Γ(X,FP /mPFP ⊕FQ/mQFQ) and pick s1 ∈ Γ(X,F) such that

(s1)P = a and (s1)Q = 0. We can pick s1 like this because we can pick s ∈ Γ(X,F)
such that sP /∈ mPFP , sQ ∈ mQFQ by assumption. Then 0 6= sP ∈ k and thus we
put s1 = (a/sP )s to get our desired element. Similarly, we pick s2 ∈ Γ(X,F) such that

(s2)P = 0 and (s2)Q = b. Then it is clear that ϕ(s1+s2) = (a, b) and thus ϕ is surjective.
Next we want to prove that F being very ample implies property (b). As F separates

tangent vectors, we know that for each point P ∈ X, the set {sP |s ∈ Γ(X,F), sP ∈
mP } spans the vector space mPFP /m2

PFP ∼= mP /m
2
P . Now let y ∈ (mP /m

2
P )∨ and

denote by (P, (OP,y)) the corresponding closed subscheme of X. The map Γ(X,F) −→
Γ(X, i∗(OP,y)) is the just restriction ρ : Γ(X,F) −→ FP ∼= OP followed by the projection
p : OP −→ OP /m2

P and the map σ : OP /m2
P −→ k[ε]/ε2 which is given by the assignment

a 7→ π(a) + y(a− π(a))ε

(for the notation also see the proof of lemma1.18). As F separates tangent vectors, we
know that p ◦ ρ maps surjectively on mP /m

2
P ⊂ OP /m2

P , which also proves that the
composition σ ◦ p ◦ ρ is surjective.

On the other hand, let F be an invertible sheaf on X such that the map ϕ :
Γ(X,F) −→ Γ(X, k(P ) ⊕ k(Q)) is surjective for any two closed points P,Q ∈ X. This
means that we can pick elements s1, s2 ∈ Γ(X,F) such that ϕ(s1) = (a, 0) for any
0 6= a ∈ k and ϕ(s2) = (0, b) for any 0 6= b ∈ k. This precisely means that for any two
distinct close points P,Q ∈ X we have a global section s such that sP ∈ mPFP but
sQ /∈ mQFQ, or vice versa. This implies that any invertible sheaf that satisfies property
(a) separates points.

As the last missing step, we want to show that an invertible sheaf F on X that
satisfies property (b) separates tangent vectors. Thus, let P ∈ X, then we need to show
that the set {sP |s ∈ Γ(X,F), sP ∈ mP } spans the vector space mPFP /m2

PFP ∼= mP /m
2
P .

In order to prove this, assume the contrary, i.e. assume there is some v ∈ mP /m
2
P such

that v /∈ im(p◦σ). Any v ∈ mP /m
2
P naturally gives rise to an element ṽ ∈ (mP /m

2
P )∨ and

we can check that for the subscheme associated to ṽ, the map σ ◦ p ◦ ρ is not surjective,
which gives a contradiction. This concludes the proof. �
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Chapter 1 2. CATEGORY-THEORETIC SETTING

2. Category-theoretic setting

In this section, we take a closer look at the category-theoretic setting we will be
working in. Specifically, we will introduce the concepts of derived and triangulated
categories, which will be central for our further considerations.

2.1. Abelian categories, chain complexes and the homotopy category.

Definition 2.1. Let C be a category. C is called abelian if

(1) for each two objects X,Y in C, HomC(X,Y ) has the structure of an abelian
group and behaves linearly with respect to composition,

(2) C has a zero object , i.e. an object O such that Hom(O,O) is the trivial group,
(3) finite sums and products exist and they are isomorphic,
(4) Every morphism f ∈ Hom(A,B) admits a kernel and a cokernel and the natural

map Coim(f) −→ Im(f) is an isomorphism

A category that satisfies the first three axioms is called additive. An additive functor is
a functor of additive categories that induces group-homomorphisms on the Hom-sets.

Definition 2.2. Let k be a field. An additive category C is called k-linear, if for every
two objects X,Y of C we have that HomC(X,Y ) is a k-vector space and composition of
maps is bilinear.

Example: The most important example of an abelian category for us is Coh(X),
the category of coherent sheaves on an algebraic variety X over a field k (the proof is an
immediate consequence of [Har77, Proposition II.5.7]). It is also k-linear as one easily
checks. A more general example, which will prove useful later on is the category Mod(X)
of sheaves of OX -modules on a ringed space (X,OX) (cf. [Har77, Example III.1.0.6]).

Definition 2.3. Let A be an abelian category. A chain complex with objects in A is a
family of objects B• = (Bi)i∈Z and maps di : Bi −→ Bi+1, i ∈ Z with the property that
di+1 ◦ di = 0 (or equivalently im(di) ⊂ ker(di+1)), called the differentials of B•. We will
visualize a chain complex B• in the following way:

. . . −→ Bi−1 −→ Bi −→ Bi+1 −→ . . .

For a chain complex B• with objects in A and n ∈ Z, we define the n-th cohomology
object of B• as

Hn(B•) := ker(dn)/im(dn−1)

Note that this is an element of A for all n, as A has kernels and cokernels. A chain
complex B• is called bounded from the left if there is an integer j such that Bi = 0 for
all i < j. A chain complex B• is called bounded from the right if there is an integer k
such that Bi = 0 for all i > k. A chain complex is called bounded if it is both bounded
from the left and bounded from the right.

Definition 2.4. Let A•, B• be chain complexes with objects in A. A morphism of chain
complexes A• −→ B• is a family of morphisms f i : Ai −→ Bi such that diB◦f i = f i+1◦diA
for all i. The morphism f naturally induces morphisms H i(A•) −→ H i(B•) for all i
and f is called a quasi-isomorphism if these induced maps are all isomorphisms.

Definition 2.5. Let A,B be abelian categories and let F : A −→ B be a functor. F is
called

11
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• left exact, if for any exact sequence 0 −→ A −→ B −→ C −→ 0 with objects in
A, the sequence 0 −→ F (A) −→ F (B) −→ F (C) is exact.
• right exact, if for any exact sequence 0 −→ A −→ B −→ C −→ 0 with objects

in A, the sequence F (A) −→ F (B) −→ F (C) −→ 0 is exact.

F is called exact if it is both left exact and right exact.

Definition 2.6. Let A be an abelian category.

• The category of chain complexes in A, denoted by Ch(A) is the category that
has objects all chain complexes of objects in A and morphisms maps of chain
complexes.
• The homotopy category K(A) is the category that has the same objects as
Ch(A) and as morphisms maps of chain complexes modulo homotopy equiva-
lence. This means that HomK(A)(X,Y ) = HomCh(A)(X,Y )/ ∼, where f ∼ g if

there are maps hn : Xn −→ Y n−1 such that fn − gn = dn−1Y ◦ hn + hn+1 ◦ dnX
for all n ∈ Z.

Remark: Note that a morphisms A• −→ B• induces maps Hn(A•) −→ Hn(B•)
for all n. We can easily check that this makes Hn into a functor Ch(A) −→ A. It is
also true that two homotopy-equivalent maps induce the same map on the cohomology
objects and thus this gives functors Hn : K(A) −→ A.

2.2. The derived category of an abelian category. To every abelian category
A, we can associate the so-called derived category D(A). We construct it in the following
way:

Definition 2.7. Let A be an abelian category. Define the derived category D(A) of A
as follows:

• The objects of D(A) are the objects of Ch(A)
• For A•, B• ∈ D(A) the set of morphisms HomD(A)(A

•, B•) is given by equiva-
lence classes of diagrams of the form

C•

!!C
CC

CC
CC

C

qis
}}{{

{{
{{

{{

A• B•

where C• −→ A• is a quasi-isomorphism. The equivalence relation and compo-
sition of maps are explained below.

Two diagrams are considered equivalent if they are dominated by a third one in
K(A) in the following way:

C•

!!B
BB

BB
BB

B

}}||
||

||
||

C•1
qis

~~||
||

||
||

**UUUUUUUUUUUUUUUUUUUUUUUU C•2

!!B
BB

BB
BB

B

qis
ttiiiiiiiiiiiiiiiiiiiiiiii

A• B•

12
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where the compositions C• −→ C•1 −→ A• and C• −→ C•2 −→ A• are quasi-isomorphisms
and the diagram commutes in K(A) i.e. up to homotopy equivalence.

The composition of maps requires a bit of work (which we will not carry out explic-
itly): take two morphisms

C•1

!!B
BB

BB
BB

B

qis
~~||

||
||

||

A• B•

and

C•2

!!B
BB

BB
BB

B

qis
}}||

||
||

||

B• C•

then we want their composition to be given by a commutative (up to homotopy equiva-
lence) diagram of the form

C•0

  
AA

AA
AA

AA

qis~~}}
}}

}}
}}

C•1

qis
~~||

||
||

||

!!B
BB

BB
BB

B
C•2

!!B
BB

BB
BB

B

qis
}}||

||
||

||

A• B• C•

We will not give a proof here that these diagrams exist and that they’re unique up to
homotopy equivalence, but rather refer the reader to [Huy06, Chapter 2].

Remark 1: D(A) is also characterized by the following universal property: let
i : Ch(A) −→ D(A) be the canonical functor. Then i sends quasi-isomorphisms to
isomorphisms and if a functor F : Ch(A) −→ C sends quasi-isomorphisms to isomor-
phisms then there is a unique functor G : D(A) −→ C such that F = G◦i. (cf. [Huy06,
Theorem 2.10]).

Remark 2: One idea behind the derived category D(A) is that we want to identify

objects of A with their resolutions: let . . . −→ R2 −→ R1 −→ R0 ε−→ E be a resolution
of an object E ∈ A. If we consider the complex . . . −→ R2 −→ R1 −→ R0 −→ 0 −→ . . .
as an object in D(A) then we have a quasi-isomorphism from this complex to the complex
. . . −→ 0 −→ E −→ 0 −→ . . .. But this means that there is also an inverse to this quasi-
isomorphism in D(A), which implies that both complexes are isomorphic in D(A).

The following lemma tells us that cohomology also descends to the derived category
and therefore provides a valuable tool for our further studies:

Lemma 2.8. The cohomology functors Hn : Ch(A) −→ A induce well-defined functors
Hn : D(A) −→ A.

Proof. cf. [Huy06, Chapter 2] �

A first useful application of cohomology is the following proposition.

13
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Proposition 2.9. There is an equivalence of categories between an abelian category
A and the full subcategory of D(A) consisting of H0-objects (i.e. objects P for which
H i(P ) 6= 0⇔ i = 0).

Proof. This follows from the fact that we have a quasi-isomorphism between a
complex A• with H i(A•) = 0 for all i > m and a complex B• with Bi = 0 for all i > m
in the following way:

. . . dm−2
// Am−1

dm−1
// Am

dm // Am+1 d
m+1

// . . .

. . . dm−2
// Am−1

dm−1
//

id

OO

ker(dm)

i

OO

0 // 0

0

OO

0 // . . .

In the same way we construct a a quasi-isomorphism between a complex A• with
H i(A•) = 0 for all i < m and a complex B• with Bi = 0 for all i < m:

. . . dm−2
// Am−1

dm−1
//

0

��

Am
dm //

p

��

Am+1 d
m+1

//

id
��

. . .

. . . dm−2
// 0

dm−1
// coker(dm−1)

dm // Am+1 d
m+1

// . . .

Now, if C• is an H0-object, then we can apply both procedures to show that in
D(A), we have C• ∼= H0(C•)•0, where the latter is the complex that it equal to zero
everywhere except at position 0, where it is H0(C•). Now it is clear that the functor
A 7→ A•0 is essentially surjective, where A•0 is the complex that is zero everywhere except
at 0, where it is A. For the proof that it is fully faithful, we refer the reader to [GM03,
Proposition III.5.2]. �

Notation: This proposition allows for some abuse of notation, as we can now view
H0-objects in D(A) as objects of A and vice versa. Thus for A ∈ A, we define A[n] ∈
D(A) as the complex that is all zero except at position n, where it is A. If we leave out
[n] completely we mean A[0].

Most of the time, we want to concentrate our efforts on bounded complexes. There-
fore we make the following definition:

Definition 2.10. Let A be an abelian category and define Ch∗(A) for ∗ = +,−, b as the
category of complexes A• with Ai = 0 for i � 0, i � 0 or |i| � 0 respectively. Then by
the same procedure as described above we obtain from Ch∗(A) the category D∗(A) and
natural functors D∗(A) −→ D(A) by just forgetting the boundedness condition.

Now we define the most important example of a bounded derived category for this
thesis:

Definition 2.11. Let X be a noetherian scheme and consider the abelian category
Coh(X) of coherent sheaves on X. Then Db(X) := Db(Coh(X)) is defined as the bounded
derived category of coherent sheaves on X.

In general, bounded derived categories categories have a nice description

14
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Proposition 2.12. The natural functors D∗(A) −→ D(A) for ∗ = +,−, b define equiv-
alences of D∗(A) with the full subcategories of all complexes A• ∈ D(A) with H i(A•) = 0
for i� 0, i� 0 or |i| � 0 respectively.

Proof. cf. [Huy06, Proposition 2.30] �

2.3. Triangulated categories. Derived categories will play an important role in
this thesis. A concept that captures their most important features is provided by the
definition of a triangulated category. It is especially useful as it makes no reference to
the underlying abelian categories.

Definition 2.13. Let D be an additive category. The structure of a triangulated cate-
gory on D is given by an additive equivalence

T : D −→ D,
called the shift functor on D and a set of distinguished triangles of the form

A −→ B −→ C −→ T (A)

with A,B,C ∈ D, which must satisfy a certain number of axioms.

Remark: We will not specify the axioms that must be satisfied by the distinguished
triangles as we will hardly need them. They can, for instance, be found in [GM03,
Chapter IV.1]. One can think of the exact triangles as a generalization of short exact
sequences. For a triangle

A −→ B −→ C −→ T (A)

it is possible to prove from the axioms that the composition A −→ C is zero, cf. [Huy06,
p. 13]

Notation: It is, of course, possible to apply T or its quasi-inverse a number of times
to an object A ∈ D. We will write TnA =: A[n] for all n ∈ Z.

The next proposition gives us the most important example of a triangulated category
for this thesis:

Proposition 2.14. The derived category D(A) of an abelian category A is triangulated.

Proof. A proof can be found in [GM03, Chapter IV.2]. �

Remark: Db(X) is triangulated, with shift functor just the usual shifting of com-
plexes in degree (i.e. T (C•) is the complex with T (C•)i = Ci+1 and differentials
diT (C•) = −di+1

C• ). The set of distinguished triangles is defined via the mapping cone

of a morphism of complexes (cf. [Huy06, Definition 2.23]).
Next, we need a replacement for the notion of an exact functor between abelian

categories. Notice that many triangulated categories are not abelian. Therefore, kernels,
cokernels etc. do not always exist, which, in general, makes it impossible to apply the
usual definition of an exact functor, as we cannot even define an exact sequence.

Definition 2.15. An additive functor

F : D −→ D′

between two triangulated categories is called exact if

15
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(i) There exists a functor isomorphism

F ◦ TD ∼= TD′ ◦ F
(ii) Any distinguished triangle

A −→ B −→ C −→ A[1]

in D is mapped to a distinguished triangle

F (A) −→ F (B) −→ F (C) −→ F (A[1]) ∼= F (A)[1]

We also need the following:

Definition 2.16. A collection Ω of objects in a triangulated category D is called a
spanning class of D if for all objects B of D the following two conditions hold:

(1) If Hom(A,B[i]) = 0 for all A ∈ Ω and all i ∈ Z, then B ∼= 0
(2) If Hom(B[i], A) = 0 for all A ∈ Ω and all i ∈ Z, then B ∼= 0

Remark: If D is k-linear and carries the additional structure of a Serre functor
(cf. Definition 5.3), then the two conditions are equivalent: let Hom(A,B[i]) = 0 for
all A ∈ Ω and all i ∈ Z. Then we have that 0 = Hom(A,B[i]) = Hom(S(B[i]), A)∗ =
Hom(S(B)[i], A)∗ which implies that Hom(S(B)[i], A) = 0 for all A ∈ Ω and all i ∈ Z.
As S is an auto-equivalence, this proves the claim.

An important feature of the derived category of an abelian category is the existence
of the cohomology functors Hn : D(A) −→ A. This can be generalized to triangulated
categories:

Definition 2.17. Let K be a triangulated category, A an abelian category and H :
K −→ A be an additive functor. H is a cohomological functor if for every distinguished
triangle

X
u−→ Y

v−→ Z
w−→ X[1]

the sequence

H(X)
H(u)−→ H(Y )

H(v)−→ H(Z)

is exact.

Example: Let A be an abelian category and consider the bounded derived category
Db(A). The the standard 0-th cohomology functor H0 : Db(A) −→ A is a cohomological
functor (cf. [GM03, IV.1.6]). We obtain the functor Hn for every n by precomposing
H0 suitably many times with the shift functor.

3. Derived functors

Let A,B be abelian categories and F : A −→ B a functor. We can ask when the
functor F descends to a functor F ′ : D(A) −→ D(B) when we apply it component-wise
to complexes in D(A) (One condition we clearly need, is that F ′ maps quasi-isomorphic
complexes into quasi-isomorphic complexes). This is the case when F is exact, as the
following proposition shows:

Definition 3.1. Let A,B be abelian categories and F : A −→ B an exact functor. Then
the functor F ′ : D(A) −→ D(B) obtained by applying F component-wise to complexes
in D(A) is well-defined and exact in the sense of definition 2.15.
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Proof. A proof can be found in [GM03, III.6.2]. �

While this result gives an answer to our initial question, it is not a very satisfying
one: many important functors, like Hom(·, ·), · ⊗ · or the global section functor Γ for
complexes of sheaves are only left or right exact, but not both. In order to address
this situation, we introduce left- and right-derived functors. This means that for any
left-(right-)exact functor F : A −→ B such that A contains a class adapted to F we can
define an induced functor RF : D+(A) −→ D+(B) (LF : D−(A) −→ D−(B)):

Theorem 3.2. Let F : A −→ B be a left-(right-)exact functor. If A contains a class
adapted to F , then F induces a unique exact functor RF : D+(A) −→ D+(B) (LF :
D−(A) −→ D−(B)).

Proof. Roughly, the construction works as follows: a class IF adapted to F consists
of objects that have the following properties:

(1) If C• ∈ K+(A) (∈ K−(A) is acyclic with Ci ∈ IF , then F (C•) is acyclic
(2) Any object of A can be embedded into (is the quotient of) an object of IF .

These properties imply that any C• ∈ K+(A) (∈ K−(A) is quasi-isomorphic to some
complex C•∗ with Ci∗ ∈ IF . Now, we can define a functor RF : RF : D+(A) −→ D+(B)
(LF : D−(A) −→ D−(B)) by putting RF (C•) = F (C•∗ ) where the functor F is applied
component-wise. For details on the construction, we refer the reader to [GM03, Chapter
III.6]. �

Examples: Consider the category Ab(X) of sheaves of abelian groups on a topo-
logical space X. This category is abelian and it contains enough injectives, which means
that it contains a class adapted to every left-exact functor with domain Ab(X). Next,
consider the category Db(X) for X a smooth projective variety. In this case, the class
of locally free sheaves on X is adapted to the functor A⊗ · for any coherent sheaf A on
X and thus induces an exact endofunctor A⊗L ·.

4. Homological algebra and sheaf cohomology

Next, we present some basic results for classical derived functors in the context
of sheaf cohomology. In this section, we always refer to derived functors as the ones
obtained from taking injective resolutions, applying a left-exact functor and taking the
i-th cohomology.

Definition 4.1. Let X,Y be objects in an abelian category A. We define

ExtiA(X,Y ) := HomDb(A)(A[0], B[i])

Furthermore, for E•, F • ∈ Db(A), define

Exti(E•, F •) := HomDb(A)(E
•, F •[i])

Proposition 4.2. ExtiA(X,Y ) = 0 for i < 0 and Ext0A(X,Y ) = HomA(X,Y ).

Proof. cf. [GM03, III.5.5]. The latter statement is an easy consequence of the
fact that we have an equivalence of categories between the full category of H0-objects
of D(A) and A (cf. Proposition 2.9). �
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Proposition 4.3. Let A be an abelian category with sufficiently many injectives, X an
object of A. Then

ExtiA(X, ·) ∼= RHomi
A(X, ·)

where RHomi
A(X, ·) is the classical i-th left-derived Hom-functor (i.e. the classical Ext).

Proof. cf. [GM03, III.6.14] �

Definition 4.4. Let A be a sheaf of OX-modules on a noetherian scheme X. Then the
functor Ext(A, ·) is defined as the (classical) right-derived functor of Hom(A, ·).

Remark: Let A,B be sheaves of OX -modules on a noetherian scheme X. Then
Ext(A,B) is a group, whereas Ext(A,B) is a sheaf on X! Note that in order to be able
to define the right derived functors RHom(A, ·) and RHom(A, ·) we actually need to
prove that the category of sheaves of OX -modules has enough injectives. A proof of this
result can be found in [Har77, III.2.2].

The global and local Ext-functors are related:

Proposition 4.5. Let X be a noetherian scheme, let F be a coherent sheaf on X, let G
be any OX-module and let x ∈ X be a point. Then we have

Exti(F,G)x ∼= ExtiOx
(Fx, Gx)

for all i ≥ 0, where the right-hand side is Ext over the local ring Ox.

Proof. cf. [Har77, III.6.8] �

The following theorem, known as Serre duality, will be an important tool for our
further studies, as it makes possible the definition of the Serre functor in the derived
category of coherent sheaves on a smooth projective variety. We state the version that
can be found in [Huy06, Theorem 3.12].

Theorem 4.6. (Serre duality) Let X be a smooth projective variety of dimension n over
a field k. For two complexes E•,F• ∈ Db(X) there exists a functorial isomorphism

Exti(E•,F•) ∼−→ Extn−i(F•, E• ⊗ ωX)∗

A useful statement that we will need in the context of point-like objects in Db(X)
is the following

Corollary 4.7. Let x ∈ X and ix(A) be a skyscraper sheaf in x associated to some
OX,x-module A. Then

H i(X,A(x)) =

{
A if i = 0

0 if i > 0

Proof. As all restriction maps of ix(A) are either zero or the identity map, the
sheaf is flasque. Now the statement follows from [Har77, III.2.5]. �

The next statement is a useful property of the tensor product:

Lemma 4.8. Let X be projective variety, A an OX-module, B ⊂ A a submodule and C
a locally free sheaf on X. Then

(A⊗ C)/(B ⊗ C) ∼= (A/B)⊗ C
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Proof. We have an exact sequence

0 −→ B −→ A −→ A/B −→ 0

and as the functor D ⊗ · is acyclic for D a locally free sheaf, the sequence

0 −→ B ⊗ C −→ A⊗ C −→ (A/B)⊗ C −→ 0

will be exact as well. Now it follows directly that (A⊗ C)/(B ⊗ C) ∼= (A/B)⊗ C. �

5. The derived category of an algebraic variety

Here, we state some useful facts about Db(X) and introduce Serre functors, an
important tool for our study of Bondal and Orlov’s theorem.

Theorem 5.1. The derived category Db(X) of coherent sheaves on an smooth projective
variety is additive.

Proof. The difficulty with this theorem is the following: a morphism A −→ B in
Db

coh(X) can be represented by a diagram in K(Coh(X)) of the following form:

C

  
@@

@@
@@

@

qis
��~~

~~
~~

~

A B

where A −→ C is a quasi-isomorphism. Now, one needs to find a way to add two such

diagrams. One proceeds in the following way: for two diagrams A
qis←− C

f−→ B and

A
qis←− C ′

g

−→ B it is possible to find a “common denominator“ i.e. an object D such

that we can find representing diagrams A
qis←− D

f ′−→ B and A
qis←− D

g′−→ B. Then

define the sum of the diagram as the equivalence class of the diagram A
qis←− D f ′+g′−→ B.

The details of the construction can be found in [GM03, III.4.5] �

Lemma 5.2. The derived category Db(X) of coherent sheaves on an smooth projective
variety is k-linear and Hom-finite.

Proof. By the previous theorem, k-linearity is an immediate consequence. In order
to prove that Db(X) is Hom-finite, one uses 1.16 and some spectral sequences to prove
that Hom(E•,F•) is finite-dimensional for all E•,F• ∈ Db(X) (cf. [Huy06, Remark
3.7]). �

The following definition is central for the proof of Bondal and Orlov’s theorem. In
the setting of their theorem, it provides the ability of being able to tensor an element of
Db(X) with an ample invertible sheaf (this will become clear with proposition 5.7).

Definition 5.3. Let A be a k-linear category. A Serre functor is a k-linear equivalence
S : A −→ A such that for any two objects A,B ∈ A, there exists an isomorphism of
k-vector spaces

ηA,B : Hom(A,B) −→ Hom(B,S(A))∗

which is functorial in A and B. (Here, Hom(B,S(A))∗ denotes the dual of the k-vector
space Hom(B,S(A)).)
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Proposition 5.4. Let A,B be k-linear triangulated categories endowed with Serre func-
tors SA and SB such that all Hom-sets in both categories are finite-dimensional. If
F : A −→ B is a k-linear equivalence of categories, then there is an isomorphism of
functors

F ◦ SA ∼= SB ◦ F

Proof. Let A,B ∈ A, then we have

Hom(B,A) ∼= Hom(F (B), F (A)) ∼= Hom(F (A), SB(F (B)))∗

where we first used that F is a k-linear equivalence of categories and then applied
the Serre functor in B. On the other hand we have Hom(B,A) ∼= Hom(A,SA(B)))∗ ∼=
Hom(F (A), F (SA(B)))∗ and as all Hom-spaces are finite-dimensional, we now get a func-
torial isomorphism Hom(F (A), F (SA(B)) ∼= Hom(F (A), SB(F (B))). As F is essentially
surjective, for each B ∈ A we now have two isomorphic functors Hom(·, F (SA(B)) ∼=
Hom(·, SB(F (B)) from B to Fun and by the Yoneda-Lemma this means that there is an
isomorphism F (SA(B)) ∼= SB(F (B)). �

Corollary 5.5. Serre functors are uniquely determined up to isomorphism in k-linear,
triangulated categories with finite-dimensional Hom-sets.

Proof. Just plug in F = id the identity functor in proposition 5.4. �

Proposition 5.6. Any Serre functor on a triangulated category over a field k is exact.

Proof. cf. [Huy06, Proposition 1.46]. In order to prove the first identity for the
special case of Hom-finite categories, just use prop. 5.4 with F = T , the shift functor. �

Proposition 5.7. For a smooth projective variety X of dimension n, the functor S :
Db(X) −→ Db(X), S(C) = C⊗ωX [n] is a Serre functor, where ωX denotes the canonical
bundle of X.

Proof. This is [Huy06, Theorem 3.12]. It follows from Serre duality and the fact
that · ⊗ ωX [n] is fully faithful and essentially surjective. Notice the subtlety that a
priori, the usual tensor product is not defined on Db(X) (we would have to resort to the
left-derived tensor product ⊗L). However, as ωX is locally free, the functor ωX ⊗· sends
acyclic complexes of coherent sheaves on X to acyclic ones and thus S is well-defined. �

Remark: In the setting of the previous proposition, Db(X) has finite-dimensional
Hom-spaces according to lemma 5.2. Thus, corollary 5.5 applies and we see that the
functor S from proposition 5.7 is the unique Serre functor on Db(X).

The next definition is important for the treatment of Bondal and Orlov’s theorem
as well as for the recovery of Chow groups which we will be looking at later on.

Definition 5.8. For F ∈ Db(X), we define the (cohomological) support of F by

supp(F ) :=
⋃
i

supp(Hi),

where Hi is the i-th cohomology sheaf of F .
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Remark: By abuse of notation, we write supp(F ) for F ∈ Db(X) and F ∈ Coh(X).
However, there is little trouble involved, as for G ∈ Coh(X) we have supp(G[0]) =
supp(G). Note also that supp(F ) is stable under isomorphism, as isomorphic objects in
Db(X) have isomorphic cohomology sheaves. Finally, this definition is also equivalent
to the following one (cf. [Tho97, Definition 3.2]):

supp(F ) = {x ∈ X|Fx � 0 ∈ Db(Mod(OX,x))}

Proposition 5.9. Let A• ∈ Db(X) be a complex with m := max{i|Hi(A•) 6= 0} and
n := min{i|Hi(A•) 6= 0}. Then there exists an epimorphisms ϕ : A• −→ Hm(A•)[−m]
and a monomorphism ψ : Hn(A•)[−n] −→ A• such that Hm(ϕ) = id = Hn(ψ).

Proof. From the proof of prop. 2.9 we know that there is a q.i.s. from the complex
C•

. . . −→ Am−2 −→ Am−1 −→ ker(dm) −→ 0 −→ . . .

to A•. Now we also have an epimorphism of complexes
. . . // Am−2 //

��

Am−1 //

��

ker(dm) //

π

��

0 // . . .

. . . // 0 // 0 // ker(dm)/im(dm−1) // 0 // . . .

where π is the natural projection map π : ker(dm) −→ ker(dm)/im(dm−1). Thus we have
a diagram

ϕ : A•
qis←− C• −→ Hm(A•)[−m]

which proves that there is a morphism ϕ : A• −→ Hm(A•)[−m] in Db(X). It is clear
from the construction that Hm(ϕ) = id.

The statement for ψ : Hn(A•)[−n] −→ A• follows analogously from the fact that
there is a q.i.s A• −→ D• for the complex D•

. . . −→ 0 −→ coker(dn−1) −→ An+1 −→ An+2 −→ . . .

and a monomorphism of complexes
. . . // 0 // coker(dn−1) // An+1 // An+2 // . . .

. . . // 0 //

OO

ker(dn)/im(dn−1) //

ι

OO

0 //

OO

0 //

OO

. . .

where ι is the inclusion ker(dn)/im(dn−1) −→ An/im(dn−1). Now we got a diagram

ψ : A•
qis−→ D• ←− Hn(A•)[−n]

which yields the desired result as in the previous case. �

We will need the following statement:

Proposition 5.10. Let X be a smooth projective variety. Then the skyscraper sheaves
k(x), with x ∈ X a closed point, form a spanning class for Db(X), i.e.

(1) If Hom(k(x), B[i]) = 0 for all closed points x ∈ X, B ∈ Db(X) and i ∈ Z then
B ∼= 0 and
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(2) if Hom(B[i], k(x)) = 0 for all closed points x ∈ X, B ∈ Db(X) and i ∈ Z then
B ∼= 0.

Proof. cf. [Huy06, Proposition 3.17] �

Remark: As mentioned before, the two conditions are equivalent, as Db(X) has a
Serre functor.

6. Spectral sequences

This section is meant as a pure reminder and we just give the very basic definitions
we need and the examples that we’ll be working with. For our definitions, we follow
[Huy06, Section 2.3].

Definition 6.1. A spectral sequence in an abelian category A is a collection of objects

(Ep,qr , En), n, p, q, r ∈ Z, r ≥ 1

and morphisms
dp,qr : Ep,qr −→ Ep+r,q−r+1

r

subject to the following conditions:

(1) dp+r,q−r+1
r ◦ dp,qr = 0 which yields a complex Ep+•r,q−•r+•r .

(2) We have isomorphisms Ep,qr+1
∼= H0(Ep+•r,q−•r+•r ) which are part of the data.

(3) For any (p, q) there exists an r0 such that dp,qr = dp−r,q+r−1r = 0 for all r ≥ r0.
This implies that Ep,qr ∼= Ep,qr0 for all r ≥ r0. Denote Ep,qr0 by Ep,q∞ .

(4) There is a decreasing filtration

F p+1En ⊂ F pEn ⊂ . . . ⊂ En

such that ⋂
p

F pEn = 0 and
⋃
p

F pEn = En

and there are isomorphisms Ep,q∞ ∼= F pEp+q/F p+1Ep+q

If the objects of one layer Ep,qr are explicitly given, one writes

Ep,qr ⇒ Ep+q

In many applications, one has an explicit description for the layer r = 2.
Spectral sequences naturally arise in the study of the composition of two derived

functors. We will not go into details here but rather give two examples that we will use
in the proof of Bondal and Orlov’s theorem:

Proposition 6.2. Let X be a smooth projective variety and A,B ∈ Db(X). Then there
are a spectral sequences

Ep,q2 = HomDb(X)(H
−q(A), B[p])⇒ HomDb(X)(A,B[p+ q])

and
Ep,q2 = Hp(X, Extq(A,B))⇒ Extp+q(A,B)

where the latter is called the local-to-global spectral sequence.

Proof. Both sequences can be found in [Huy06], chapter 2.3 and 3.3. �

22



Chapter 1 6. SPECTRAL SEQUENCES

Remark: A general way to use the sequences is when one knows that dp,qr =
dp−r,q+r−1r = 0 for some (p, q) and all r. Then Ep,q2 6= 0 implies Ep+q 6= 0. Another
useful fact is that if Ep,qm = 0 then Ep,qn = 0 for all n ≥ m, which follows from property
2 of the definition. Spectral sequences are mostly used to obtain information about the
objects Ep+q as well as the objects Ep,q∞ .

To finish this section, we want to give a small but useful application. We prove a
result which generalizes 1.5 and uses the local-to-global spectral sequence. It also serves
as a rather easy example.

Lemma 6.3. Let X be a smooth projective variety and x, y ∈ X be two distinct closed
points with associated skyscraper sheaves k(x), k(y). Then

Exti(k(x), k(y)) = 0 for all i ∈ Z

Proof. We use the spectral sequence

Ep,q2 = Hp(X, Extq(k(x), k(y)))⇒ Extp+q(k(x), k(y))

First, we will look at the sheaf Extq(k(x), k(y)). Define the open subsets Ux = X \ {x}
and Uy = X \ {y}, which cover X. Then [Har77, III.6.2] tells us that

ExtqX(k(x), k(y))|Ux = ExtqUx
(k(x)|Ux , k(y)|Ux) = ExtqUx

(0, k(y)|Ux) = 0

and
ExtqX(k(x), k(y))|Uy = ExtqUy

(k(x)|Uy , k(y)|Uy) = ExtqUy
(k(x)|Uy , 0) = 0

which implies Extq(k(x), k(y)) = 0 for all q and thus Ep,q2 = 0 for all p, q. This immedi-

ately yields Exti(k(x), k(y)) = 0 for all i by property (4) of definition 6.1. �
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CHAPTER 2

Bondal and Orlov’s theorem

In this section, we will show a proof of Bondal and Orlov’s theorem (cf. [BO01])
based on D. Huybrechts’ version of the proof (cf. [Huy06, Chapter 4]). In the following,
all schemes considered will be smooth projective varieties over an algebraically closed
field k. Before we start, here’s a short notational note:

Notation: If we’re dealing with an object B ∈ Db(X) and want to stress that it
is a complex, we will write B•. If we’re talking about the cohomology sheaves of a
complex B• we will write Hn(B•), whereas the cohomology of a sheaf A will be denoted
by Hn(A).

1. A useful proposition

Proposition 1.1 already indicates that some of the geometry of a smooth projective
variety is encoded in its derived category of coherent sheaves. Furthermore, it provides
information we need to tackle the proof of the main theorem.

Proposition 1.1. Let X and Y be smooth projective varieties over a field k. If there
exists an exact equivalence

F : Db(X)
∼−→ Db(Y )

of their bounded derived categories, then

dim X = dim Y

Proof. Since both varieties are smooth projective, their derived categories of coher-
ent sheaves are endowed with natural Serre functors SX and SY , which commute with
F by chapter 1, prop. 5.4. Now, pick a closed point x ∈ X. Then k(x) ∼= k(x)⊗ ωX =
SX(k(x))[−dim(X)] and thus we can make the calculation

F (k(x)) ∼= F (SX(k(x))[−dim(X)])

∼= F (SX(k(x)))[−dim(X)] as F is exact

∼= SY (F (k(x)))[−dim(X)]

= F (k(x))⊗ ωY [dim(Y )− dim(X)]

Since F is an equivalence, we know that F (k(x)) is a non-trivial and bounded complex in
Db(Y ). Hence there we can pick i maximal (resp. minimal) such that Hi(F (k(x))) 6= 0.
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Then we make the computation

0 6= Hi(F (k(x)))

∼= Hi(F (k(x))⊗ ωY [dim(Y )− dim(X)])

= Hi+dim(Y )−dim(X)(F (k(x)))⊗ ωY
where the last equality follows from chapter 1, lemma 4.8 as ωY is locally free. This im-
plies that Hi+dim(Y )−dim(X)(F (k(x))) 6= 0 as well (which we can, for example, check
on the stalks of the sheaf). Now we get a contradiction to the maximality (resp.
minimality) of i if dim(Y ) > dim(X) (resp. dim(Y ) < dim(X)) and thus we have
dim(Y ) = dim(X) := n.

�

2. Point-like and invertible objects

We will introduce some geometric notions to Db(X) by defining point-like objects
and invertible objects. These notions are central for the proof of Bondal and Orlov’s
theorem. Note that the results we present will not always require the varieties to have
ample canonical bundle. We will make use of this fact later on.

Definition 2.1. Let A be a k-linear category with Serre functor S. An object P of A is
called point-like of codimension d if

(i) S(P ) ∼= P [d]
(ii) Hom(P, P [i]) = 0 for i < 0

(iii) k(P ) := Hom(P, P ) is a field

An object that satisfies the last requirement is called simple.

Definition 2.2. Let A be a triangulated category with Serre functor S. An object L of
A is called invertible if for any point-like object P of A, there exists nP ∈ Z such that

Hom(L,P [i]) =

{
k(P ) if i = nP

0 otherwise

As the naming suggests, point-like objects will correspond to points on the variety
X and invertible objects will correspond to invertible sheaves on X. Establishing this
correspondence is the next part of the proof.

Proposition 2.3. Let X be a smooth projective variety and suppose F• is a simple
object in Db(X) with zero-dimensional support. If Hom(F•,F•[i]) = 0 for i < 0 then

F• ∼= k(x)[m]

for some closed point x ∈ X and some integer m.

Proof. First we show that F• is concentrated in one closed point only. We know
that supp (F•) =

⋃
supp

(
Hi(F•)

)
is a zero-dimensional closed subset of X: our vari-

ety is noetherian, the cohomology sheaves are coherent and the union is finite as we’re
working with homologically bounded complexes, and thus definition 1.13 from chap-
ter 1 applies. Then [Huy06, Lemma 3.9] tells us that if supp(F•) can be written as
Z1
∐
Z2 with Z1 and Z2 closed disjoint sets then F• can be written as F•1 ⊕ F•2 with
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supp(F•1 ) ⊂ Z1 and supp(F•2 ) ⊂ Z2. But now, the projection on either of the two sum-
mands is a non-trivial morphism in Db(X) which is not invertible: indeed, it cannot be
a quasi-isomorphism as Hn(F•1 ⊕ F•2 ) ∼= Hn(F•1 ) ⊕ Hn(F•2 ) and on the homology-level
the projection isn’t an isomorphism either unless one of the summands is trivial (which
is not the case as both summands have non-trivial support). But this is impossible as
F• was a simple object and thus we can conclude that all cohomology sheaves of F•
have support the same closed point x ∈ X.

Now, set m0 = max{n|Hn(F•) 6= 0} and m1 = min{n|Hn(F•) 6= 0} (note that this
is well-defined as F• is bounded) and look at the sheaves Hm0(F•) and Hm1(F•), which
are both concentrated in x, i.e. Hm0(F•)|X\{x} = Hm1(F•)|X\{x} = 0.

A general fact from commutative algebra now tells us that there is a non-trivial
module homomorphism Hm0(F•)x −→ Hm1(F•)x: both Hm0(F•)x and Hm1(F•)x are
finitely generated modules over the local noetherian ring OX,x with support mx. Then
there exists a surjection Hm0(F•)x � OX,x/mx = k(x) and an injection OX,x/mx =
k(x) ↪→ Hm1(F•)x. Thus we get a non-trivial morphism

Hm0(F•) −→ Hm1(F•)

Furthermore there exists an epimorphism F•[m0] −→ Hm0(F•) and monomorphism
Hm1(F•) −→ F•[m1] by Chapter 1, prop. 5.9 and we can look at the composition

F•[m0] −→ Hm0(F•) −→ Hm1(F•) −→ F•[m1]

This homomorphism is non-trivial by construction, but by our assumption it must be
trivial unless m0 6= m1: indeed, we must have m0 ≥ m1 by definition and if we have
m0 > m1, then we will have a morphism F• −→ F•[m1−m0] which must be the trivial
homomorphism by assumption. Thus we have that m1 = m2 =: m and we see that
F• has only one non-trivial cohomology sheaf. This implies that F• ∼= F [m] in Db(X),
where F is a skyscraper sheaf in x. The only such sheaf which is also simple is k(x):
Indeed, we have a surjection F −→ k(x) and an injection k(x) −→ F . If F is not equal
to k(x), the composition of these maps will be a non-invertible element of Hom(F ,F)
which contradicts its simplicity. �

Proposition 2.4. Let X be a smooth projective variety of dimension n and suppose
that ωX is ample. Then the point-like objects in Db(X) are exactly the objects which are
isomorphic to k(x)[m], where x ∈ X is a closed point and m ∈ Z.

Proof. We can check that any object of the form k(x)[m] is a point-like object,
even if ωX is not ample: first we need to check that k(x)[m]⊗ωX [n] ∼= k(x)[m+n]. We
know that ωX is a locally free OX -module of rank 1 and as we’re tensoring over OX ,
it is clear that k(x) ⊗ ωX ∼= k(x). Thus k(x)[m] ⊗ ωX [n] ∼= k(x)[m][n] = k(x)[m + n].
Furthermore we clearly have Hom(k(x), k(x)[n]) = Extn(k(x), k(x)) = 0 for all n ∈
Z<0 as negative Ext-groups are zero for every coherent sheaf (for a much more general
statement cf. [GM03, III.5.5]). It remains to prove that HomDb(X)(k(x), k(x)) = K,

where K is a field. Finding an element in HomDb(X)(k(x), k(x)) = Ext0(k(x), k(x)) =

Hom(k(x), k(x)) is equivalent to finding a k(x)-linear map k(x) −→ k(x). It is clear that
all of these maps are precisely of the form “multiplication by an element of k(x)” which
proves that HomDb(X)(k(x)[m], k(x)[m]) = k(x).
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Now assume that P ∈ Db(X) is a point-like object of codimension d, with cohomology
sheaves Hi which are not all zero (we can assume this w.l.o.g. as otherwise, P would be
isomorphic to 0 ∈ Db(X), which is certainly not a point-like object). The Serre functor
in Db(X) is given by F• 7→ F• ⊗ ωX [n] and as P is a point-like object we have that
P ⊗ ωX [n] ∼= P [d]. This implies that Hi−n ⊗ ωX ∼= Hi−d ⇔ Hi+d−n ⊗ ωX ∼= Hi for all
i as taking cohomology commutes with tensoring by a locally free sheaf by chapter 1,
lemma 4.8. As our complexes are homologically bounded, we must have b1 < b2 ∈ Z
such that b1 = max{z ∈ Z|Ha = 0 ∀a < z} and b2 = min{z ∈ Z|Ha = 0 ∀a > z}
(as P has non-trivial cohomology sheaves, this means that Hb1 6= 0 6= Hb2). Now if
(d− n) > 0, we have that Hb2 ∼= Hb2+d−n ⊗ ωX = 0⊗ ωX = 0, which is a contradiction.
By an analogous argument, one shows that we cannot have (d− n) < 0 either and thus
d = n and therefore Hi ⊗ ωX ∼= Hi for all i.

We can now prove thatHi has 0-dimensional support. As ωX is ample, we know there
is a k ∈ Z>0 such that ω⊗kX is very ample, i.e. there is a closed immersion i : X −→ Pnk
such that ω⊗kX = i∗(O(1)). This means that the Hilbert polynomial of Hi relative to

the embedding induced by ω⊗kX is given by PHi(n) = χ(Hi ⊗ ω⊗k·nX ) = χ(Hi) by what
we’ve shown earlier. But this means that PHi has degree 0 which implies, according
to [Debarre: Higher-dimensional algebraic geometry, Theorem 1.5], that supp(Hi) can
have at most dimension 0.

As supp(P ) =
⋃
i supp(Hi) and this union has only finitely many non-empty terms,

we see that P has support in dimension zero as well and thus we can apply the previous
proposition to obtain the result. �

Next, we show that invertible objects correspond to line bundles:

Proposition 2.5. Let X be a smooth projective variety. Any invertible object of Db(X)
is of the form L[m] with L a line bundle on X and m ∈ Z. Conversely, if ωX or ω∗X is
ample, then for any line bundle L and any m ∈ Z, the object L[m] is invertible.

Proof. Suppose that L is an invertible object in Db(X) and let m be maximal with
Hm := Hm(L) � 0.

Step 1: Ext1(Hm, k(x0)) = 0 for all x0 ∈ supp(Hm). By chapter 1, proposition
5.9 there exists a natural morphism φ : L −→ Hm[−m] which induces the identity
on the m-th cohomology. Next, pick a point x0 ∈ supp(Hm). Then there exists a
non-trivial homomorphism Hm −→ k(x0) (take for example the composition of the
map Hm −→ Hm|x0 followed by a quotient map Hm|x0 −→ k(x0)) and thus we have
that Hom(Hm, k(x0)) 6= 0. On the the other hand, notice that Hom(Hm, k(x0)) =
Hom(L, k(x0)[−m]): we know that a morphism between L and k(x0)[−m] in Db(X) is

given by a diagram L
qis←− K −→ k(x0)[−m]. Let K be such a complex, then a morphism

of complexes α : K −→ k(x0)[−m] looks like this:

· · · // Km−1 dm−1
//

��

Km dm //

αm

��

Km+1 //

��

· · ·

· · · // 0 // k(x0) // 0 // · · ·
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This means that α is completely determined by αm. But from the diagram we see
that im(dm−1) ⊂ kerαm and thus αm is well-defined on Hm(K) ∼= Hm as K and L are
quasi-isomorphic. This gives a map Hom(L, k(x0)[−m]) −→ Hom(Hm, k(x0)). On the
other hand, let β ∈ Hom(Hm, k(x0)), then β produces a map of complexes β′ : L′ −→
k(x0)[−m] given by the diagram

· · · // Lm−1
dm−1

//

��

ker dm
dm //

β′′

��

0 //

��

· · ·

· · · // 0 // k(x0) // 0 // · · ·

where β′′ is the composition of the canonical projection ker dm −→ Hm and β, and

L′ is a complex that is quasi-isomorphic to L. Thus we have a diagram L
qis←− L′ −→

k(x0)[−m] which is a morphism β′ : L −→ k(x0)[−m] in Db(X). This defines a map
Hom(Hm, k(x0)) −→ Hom(L, k(x0)[−m]).

Clearly, the two processes described above are inverse to each other, and we get that
Hom(Hm, k(x0)) = Hom(L, k(x0)[−m]). Therefore we also have Hom(L, k(x0)[−m]) 6= 0
and as L was an invertible object we obtain that nk(x0) = −m. Now we can conclude that

Hom(Hm, k(x0)[1]) = Hom(L, k(x0)[1+nk(x0)]) = 0 and we have that Ext1(Hm, k(x0)) =
Hom(Hm, k(x0)[1]) = 0 (according to definition 4.1 from chapter 1) as soon as x0 is in
the support of Hm.

Step 2: Hm is an invertible sheaf on X. We use the local-to-global spectral sequence
from chapter 1, 6.2:

Ep,q2 = Hp(X, Extq(Hm, k(x0)))⇒ Extp+q(Hm, k(x0))

Recall the definition of Extq(Hm, k(x0)) from chapter 1. First we want to prove that

E2,0
2 = H2(X, Ext0(Hm, k(x0)) = 0. Notice that Ext0(Hm, k(x0)) ∼= Hom(Hm, k(x0))

and thus the the sheaf Ext0(Hm, k(x0)) is concentrated in x0: indeed, let U ⊂ X be an
open subset of X, then

Ext0(Hm, k(x0))(U) = Hom(Hm|U , k(x0)|U ) = 0 if x0 /∈ U

and thus we must have supp(Ext0(Hm, k(x0))) = {x0}. It now follows from chapter 1,
lemma 1.14 that Ext0(Hm, k(x0)) is a subsheaf of the skyscraper sheaf associated to the
OX,x0-module Hom(Hm, k(x0))x0 and it particularly is a skyscraper sheaf itself. Using
chapter 1, prop. 4.7 we find that H2(X, Ext0(Hm, k(x0)) = 0. This proves that

E2,0
2 = H2(X, Ext0(Hm, k(x0)) = 0

Now we can conclude that E0,1
2 = E0,1

∞ : we have E−2,22 = H−2(X, Ext2(Hm, k(x0))) =

0 by definition and we just proved that E2,0
2 = 0. For higher sheets of the spectral se-

quence, the differentials must be zero as negative Exts and negative cohomology are zero
by definition, which indeed implies E0,1

2 = E0,1
∞ (here we use that if we have Ep,q2 = 0,

then we must have Ep,qr = 0 for all r ≥ 2). Thus, we have that E0,1
2 is a subquo-

tient of Ext1(Hm, k(x0)). But as we proved earlier, Ext1(Hm, k(x0)) = 0 which implies

that E0,1
2 = H0(X, Ext1(Hm, k(x0))) ∼= Γ

(
Ext1(Hm, k(x0))

)
= 0. Ext1(Hm, k(x0))) is

29



2. POINT-LIKE AND INVERTIBLE OBJECTS Chapter 2

concentrated in x0, as by chapter 1, proposition 4.5 we have

Ext1(Hm, k(x0)))y = Ext1OX,y
(Hmy , k(x0)y) = Ext1OX,y

(Hmy , 0) = 0

if y 6= x0 and thus it is a globally generated sheaf. Therefore we also have that 0 =
Ext1(Hm, k(x0)))x0

∼= Ext1OX,x0
(Hmx0 , k(x0)). By a well-known result in commutative

algebra (cf. [N. Bourbaki: Algèbre commutative. Chapitre 10, X.3 Prop.4]), this means
that Hmx0 is free over OX,x0 .

Next, recall that X is irreducible (by definition). Therefore we must have that
supp(Hm) = X: indeed, we know that if Hmp is free over OX,p for some p ∈ X, we know
that there is some open neighbourhood U of p, such that Hm|U is free (cf. [Har77,
Exercise II.5.7]), i.e. Hm|U ∼= ⊕iOX |U . But then for all points q ∈ U , we have that
Hmq = ⊕iOX,q 6= 0. This implies that supp(Hm) = X as it is an open and closed subset
of an irreducible variety. At this point, we have proved that Hm is a locally free sheaf
on X.

Thus, we know that for any x ∈ X we have 0 6= Hom(Hm, k(x)) = Hom(L, k(x)[−m]).
This means in particular that nk(x) does not depend on x. As L is invertible and k(x)[m]
point-like, we have for any point x ∈ X that k(x) = Hom(Hm, k(x)) = Hom(L, k(x)[−m]).
This implies that Hmx must have rank 1 for any x ∈ X, as otherwise there would be non-
invertible homomorphisms. This proves that Hm is a line bundle.

Step 3: Hi = 0 for all i 6= m. Our strategy to finish the proof is to show that we
actually have L ∼= Hm[−m] in Db(X). This amounts to proving that Hi = 0 for i < m
(as we already have Hi = 0 for i > m by assumption). For this, we take a look at the
first spectral sequence from chapter 1, proposition 6.2:

Ep,q2 = Hom(H−q(L), k(x)[p])⇒ Hom(L, k(x)[p+ q])

Notice that HomDb(X)(H−q, k(x)[p]) ∼= Extp(H−q, k(x)) by definition, in particular we
have

Ep,−m2 = HomDb(X)(Hm, k(x)[p]) ∼= Extp(Hm, k(x))

Observe that

Extp(Hm, k(x)) = Extp(OX ⊗Hm, k(x))

= Extp(OX ,Hm∗ ⊗ k(x)) as Hm is locally free, cf. [Har77, III.6.7]

= Hp(X,Hm∗ ⊗ k(x)) cf. [Har77, III.6.3]

where Hm∗ is the dual sheaf Hom(Hm,OX). Now, we clearly have that supp(Hm∗ ⊗
k(x)) = x and thus, it is a skyscraper sheaf, according to chapter 1, 1.14. But now
proposition 4.7 from chapter 1 says that Hp(X,Hm∗⊗k(x)) = 0 for p 6= 0. Therefore we

know that the complete row Ep,−m2 , p ∈ Z of our spectral sequence is trivial except for p =
0. We now finish the proof by induction: First we show that Hm−1 = 0 as an induction
base. Thus, look at E0,−m+1

2 = HomDb(X)(Hm−1, k(x)[0]) = Ext0(Hm−1, k(x)). We

want to prove that E0,−m+1
2 = E0,−m+1

∞ . In order to do so, notice that Er,−m+1−r+1
2 = 0

for r ≥ 2. Indeed, for r = 2, our previous result guarantees the claim, and we know that
Hi = 0 for i > m and thus we have the result for r ≥ 2. This implies that on all sheets of
the spectral sequence we have that d : E0,−m+1

r −→ Er,−m+1−r+1
r is the zero map (again,

we use that Ep,q2 = 0 implies that Ep,qr = 0 for all r ≥ 2.). Furthermore, we have that

E−r,−m+1+r−1
2 = Ext−r(Hm−r, k(x)) = 0 as negative Ext groups are zero by definition.
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This means that on all sheets of the spectral sequence one has d : E−r,−m+1+r−1
r −→

E0,−m+1
r is the zero map and therefore we must have E0,−m+1

2 = E0,−m+1
∞ . Recall that

the spectral sequence converges to Hom(L, k(x)[p+ q]) and thus we have that E0,−m+1
∞

is a subquotient of Hom(L, k(x)[−m + 1]). But Hom(L, k(x)[−m + 1]) = 0 as L is

invertible and k(x) is a point-like object with nk(x) = −m. This implies E0,−m+1
∞ =

Ext0(Hm−1, k(x)) = Hom(Hm−1, k(x)) = 0 for all x ∈ X closed. As all objects of the
form k(x) form a spanning class (cf. Proposition 5.10 from chapter 1), we must have
Hm−1 = 0.

Now suppose we have proven Hi = 0 for i ∈ {i0 + 1, . . . ,m − 1}. Then we have

that E0,−i0
2 = E0,−i0

∞ : again, we prove that the differentials E0,−i0
r −→ Er,−i0−r+1

r and

E−r,−i0+r−1r −→ E0,−i0
r are trivial. In the first case, this follows from the induction

hypothesis, the claim that Ep,−m2 = 0, p ∈ Z \ {0} and the fact that Hi = 0 for i > m.
The second case again follows from the fact that negative Ext groups are zero. Now,
by the very same argument as before, we can conclude that Hom(Hi0 , k(x)) = 0 for all
x ∈ X closed, which implies Hi0 = 0.

Thus, we proved that L ∼= Hm[m] in Db(X) which implies our first assertion that
any invertible object in Db(X) is of the form L[m], where L is a line bundle.

Step 4: invertible sheaves correspond to invertible objects. For the converse, we make
the additional assumption that X has ample (anti)-canonical bundle. This enables us to
use proposition 2.4, i.e. we can assume that point-like objects in Db(X) are of the form
k(x)[s] for some closed point x ∈ X and some s ∈ Z. Therefore, for a line bundle L, we
have

Hom(L[m], P [i]) = Hom(L[m], k(x)[i+ s])

= Exti+s−m(L, k(x))

∼= Exti+s−m(OX ,L∗ ⊗ k(x)) as Hm is loc. free, cf. [Har77, III.6.7]

∼= H i+s−m(X,L∗ ⊗ k(x)) cf. [Har77, III.6.3]

Now, if i + s − m 6= 0, then this expression is 0 by chapter 1, 4.7 as L∗ ⊗ k(x) is a
skyscraper sheaf. If m = i+ s, then Hom(L[m], k(x)[i+ s]) = Hom(L, k(x)) = k as L is
locally free of rank 1: indeed, we can cover X with opens Ui such that L|Ui

∼= OX |Ui .
Now pick one j such that x ∈ Uj , then a homomorphism OX |Uj −→ k(x) is completely
determined by the image of 1 ∈ OX |Uj . All other Ui that contain x have non-empty
intersection with Uj and as the restriction homomorphism Ui −→ Ui ∩ Uj sends 1 to
1, the homomorphism extends to Ui by sending 1 ∈ Uj to the same element of k as
1 ∈ Ui. On the Ui that don’t contain x, the homomorphism is just 0. Thus, we see that
Hom(L, k(x)) = k.

Thus, if we set nP = m− s we have proved the claim. This finishes the proof of the
theorem. �

3. Bondal and Orlov’s theorem

Now, we’re in a position to tackle the theorem of Bondal and Orlov. We will make
use of the fact that we have found intrinsic definitions of objects corresponding to points
and line bundles on X. An exact equivalence of categories Db(X) −→ Db(Y ) will enable
us to carry these geometric structures of X over to Y . As we will see, the main difficulty
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of the remaining part is to deduce ampleness of the canonical bundle of Y from the
ampleness of the canonical bundle of X.

Theorem 3.1. Let X and Y be smooth projective varieties and assume that the (anti)-
canonical bundle of X is ample. If there exists an exact equivalence Db(X) ∼= Db(Y ),
then X and Y are isomorphic.

Proof. First, we will give the main idea of the proof: From proposition 1.1 we know
that dim X = dim Y =: n. Furthermore, make the assumption that F maps OX to OY .
Thus, for any k ∈ N, we can make the calculation

F (ω⊗kX ) = F (OX⊗ω⊗kX ) = F (SkX(OX))[−kn] = SkY (F (OX))[−kn] = SkY (OY )[−kn] = ω⊗kY

where we used that the shift functor and the Serre functor commute with an equivalence
of categories. For the next step, notice that

Hom(OX , ωkX) = Γ(X,ωkX) (cf. Chapter 1, Lemma 1.6)

Now we can make the computation

H0(X,ω⊗kX ) = Γ(X,ω⊗kX )

∼= Hom(OX , ω⊗kX )

∼= Hom(F (OX), F (ω⊗kX ))

= Hom(OY , ω⊗kY )

∼= Γ(Y, ω⊗kY )

= H0(Y, ω⊗kY )

Notice that multiplication in the canonical ring
⊕

kH
0(X,ω⊗kX ) is induced by the Serre

functor: indeed, as SkX is an equivalence of categories, we have that

Γ(X,ωmX ) = Hom(OX , ωmX )

= Hom(OX [0], ωmX [0])

∼= Hom(Sk(OX [0])[−kn], Sk(ωmX [0])[−kn])

= Hom(ωkX [0], ωm+k
X [0])

= Hom(ωkX , ω
m+k
X )

Thus, for s1 ∈ Γ(X,ωk1X ), s2 ∈ Γ(X,ωk2X ), we can consider s1 ∈ Hom(OX , ωk1X ) and

s2 ∈ Hom(ωk1X , ω
k1+k2
X ) and define s1 · s2 = s2 ◦ s1 ∈ Hom(OX , ωk1+k2X ) = Γ(X,ωk1+k2X ).

This multiplication coincides with the usual one on the canonical ring, as it is just
concatenation of tensors. Therefore F induces a ring-isomorphism and we have that⊕

k

H0(X,ω⊗kX ) ∼=
⊕
k

H0(Y, ω⊗kY )
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If the (anti-)canonical bundle of Y is also ample and there is an integer d such that ω⊗dX
and ω⊗dY are very ample, this gives

X = Proj

(⊕
k

H0(X,ω⊗dkX )

)
∼= Proj

(⊕
k

H0(Y, ω⊗dkY )

)
= Y

by theorem 1.15 from chapter 1. So, in order to prove the theorem, we have to show:

(i) F (OX) = OY
(ii) The (anti-)canonical bundle of Y is ample and of the same order as the canonical

bundle of X.

We start our proof of (i) by stating that the equivalence F induces bijections between
the point like objects of X and Y and the invertible objects of X and Y . Indeed, let
P ∈ Db(X) be a point-like object, then F (P ) also is: We have SY (F (P )) = F (SX(P )) =
F (P [d]) = F (P )[d], furthermore Hom(F (P ), F (P [i])) ∼= Hom(P, P [i]) = 0 for i < 0 and
equal to k(P ) if i = 0. As F is an equivalence, this induces a bijection on the isomorphism
classes of point-like objects in Db(X) and Db(Y ). For L ∈ Db(X) an invertible object,
and P ∈ Db(X) a point-like object we have that

Hom(F (L), F (P [i])) ∼= Hom(L,P [i]) =

{
k(P ) for i = nP

0 otherwise

which proves that F (L) is an invertible object in Db(Y ). As F is an equivalence of
categories, we again obtain a bijection on the isomorphism classes of invertible objects.

By proposition 2.5, we have that all objects of the form L[m] with L a line bundle
on X are invertible objects on X, as X has ample (anti-)canonical bundle. In particular,
OX defines an invertible objects and thus F (OX) is a line bundle on Y , which is of
the form M [m] for some line bundle M on Y , again due to proposition 2.5. Next we
compose F with the two equivalences M∗⊗ · (notice that we don’t need the left-derived
tensor product here as M∗ is locally free!) and shifting by −m to obtain an equivalence
F ′ which obviously satisfies F (OX) = OY . This new functor is still an exact equivalence
of categories and has property (i), which means that we can assume it without loss of
generality. Now, the proof is finished by the following lemma. �

Lemma 3.2. Let X and Y be smooth projective varieties and assume that the (anti)-

canonical bundle of X is ample, i.e. there is an integer d such that ω⊗dX is very ample.

If there exists an exact equivalence Db(X) ∼= Db(Y ) then ω⊗dY is very ample.

Proof. In order to prove that ωdY is very ample, we first prove that all point-like

objects in Db(Y ) are of the form k(y)[m], for y ∈ Y a closed point. In general, any
object of the form k(y)[m] ∈ Db(Y ) is point-like (prop. 2.4) and as F induces bijections
between the sets of point like objects on Db(X) and Db(Y ) we can find for each object
k(y)[m] ∈ Db(Y ) an closed point x ∈ X such that F (k(x)[n]) = k(y)[m] for some
n ∈ Z. Now suppose there is a point-like object P ∈ Db(Y ), which is not of the form
k(y)[m] for some closed point y ∈ Y and denote by xP the closed point of X such that
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F (k(xP )[mP ]) = P for mp ∈ Z. For all y ∈ Y and m ∈ Z we have

Hom(P, k(y)[m]) = Hom(F (k(xP )[mP ]), F (k(xy)[my +m]))

= Hom(k(xP )[mP ], k(xy)[my +m])

= Hom(k(xP ), k(xy)[my +m−mP ])

= Extmy+m−mP (k(xP ), k(xy)) = 0 by chapter 1, lemma 6.3

As the objects of the form k(y)[m] form a spanning class in Db(Y ), we must have P ∼= 0,
which is in contradiction to the fact that it is a point-like object. Thus all point-like
objects of Db(Y ) have the form k(y)[m] for some closed point y ∈ Y .

Note that this also implies that for any closed point x ∈ X there exists a closed point
y ∈ Y such that F (k(x)) ∼= k(y) (no shifts needed!): to show this, note that

0 6= Hom(OX , k(x)) = Hom(F (OX), F (k(x))) = Hom(OY , k(y)[m]) = Extm(OY , k(y))

This immediately implies thatm ≥ 0 and as we have that Extm(OY , k(y)) = Hm(X, k(y))
and k(y) is flasque, we get that m = 0 by chapter 1, 4.7. Thus F (k(x)) = k(y).

Next, we show that ω⊗dY is very ample. We will do this by using lemma 1.19 from

chapter 1 and first show that ω⊗dY separates points. Thus, let φ : ω⊗kY −→ k(P )⊕ k(Q)

be induced by the restrictions ω⊗kY −→ (ω⊗kY )P ∼= OY,P and ω⊗kY −→ (ω⊗kY )Q ∼= OY,Q
and the projections OY,P −→ k(P ) and OY,Q −→ k(Q).

We have that

φ ∈ Hom(ω⊗kY , k(P )⊕ k(Q)) = Hom(F (ω⊗kX ), F (k(P ′))⊕ F (k(Q′)))

∼= Hom(ω⊗kX , k(P ′)⊕ k(Q′))

When viewed as an element of Hom(ω⊗kX , k(P ′)⊕ k(Q′)), φ corresponds to the composi-
tion of

rP ′,Q′ : ω⊗kX −→ ω⊗kXP ′
⊕ ω⊗kXQ′

and the projection map

ω⊗kXP ′
⊕ ω⊗kXQ′

� k(P ′)⊕ k(Q′)

Indeed, as ω⊗kX is an invertible sheaf on X, Hom(ω⊗kX , k(x)) = k for all closed points x ∈
X, and thus, up to scaling, there is only one non-trivial homomorphism ω⊗kX −→ k(P ′)

and ω⊗kX −→ k(Q′) which means that φ must correspond to the above composition as
it is non-trivial on both components of the direct sum. Now the commutativity of the
diagram
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Γ(Y, ω⊗kY )

=

��

rP,Q(Y )
// Γ(Y, k(P )⊕ k(Q))

=

��

Hom(OY , ω⊗kY )
rP,Q(Y )◦

//

=

��

Hom(OY , k(P )⊕ k(Q))

=

��

Hom(OX , ω⊗kX )
rP ′,Q′ (X)◦

//

=

��

Hom(OX , k(P ′)⊕ k(Q′))

=

��

Γ(X,ω⊗kX )
rP ′,Q′ (X)

// Γ(X, k(P ′)⊕ k(Q′))

together with the fact that rP ′,Q′(X) is surjective (as ω⊗kX is very ample) implies that

rP,Q(Y ) is surjective as well and thus ω⊗kY separates points.

Next, we want to show that ω⊗kY separates tangent vectors. Thus, let y ∈ Y and
f ∈ (my/m

2
y)
∨ be a tangent vector. Then by chapter 1, lemma 1.18, f corresponds to a

closed subscheme Zy concentrated in y with structure sheaf isomorphic to k[ε]/(ε2).Thus,
we have in particular an exact sequence

0 −→ k
·ε−→ k[ε]/(ε2) −→ k −→ 0

which corresponds to a non-trivial extension

eZ ∈ Ext1(k(y), k(y)) = Hom(k(y), k(y)[1])

= Hom(F (k(x)), F (k(x))[1])

= Ext1(k(x), k(x))

for some closed point x ∈ X. Therefore, eZ gives rise to an exact sequence

0 −→ k(x) −→ OZx −→ k(x) −→ 0

which defines a subscheme Zx of length two concentrated in x ∈ X, i.e. OZx is isomorphic
to k[ε]/(ε2) and therefore corresponds to a tangent vector in (mx/m

2
x)∨. Furthermore,

we have F (OZx) = OZy by construction and Γ(X,OZx) = Γ(Y,OZy) as

Γ(X,OZx) = Hom(OX ,OZx)

= Hom(F (OX), F (OZx))

= Hom(OY ,OZy)

= Γ(Y,OZy)

As ω⊗kX separates tangent vectors, we know that the restriction map ω⊗kX −→ OZx

induces a surjection Γ(X,ω⊗kX ) −→ Γ(X,OZx) by chapter 1, lemma 1.19. Now, one can
check that

F (ϕ : ω⊗kX −→ OZx) ∼= ϕ′ : ω⊗kY −→ OZy

where the maps on both sides are induced by the restriction maps and the isomor-
phism means equality up to composition by an automorphisms of OZy . In order to

see this, first notice that we have an isomorphism of k-vector spaces Hom(ω⊗kX ,OZx) ∼=
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Hom(ω⊗kY ,OZy) induced by F . Let f#X : OX −→ i∗(OZx) and f#Y : OY −→ i∗(OZy) be

the natural morphisms. Notice that any morphism of OV -modules f : ω⊗kV −→ OZv

factors as f ′ ◦ πv, for V = X,Y and v = x, y respectively, where πv maps a sec-
tion s ∈ ω⊗kV (U) to the germ sv ∈ ω⊗kV,v

∼= OV,v if v ∈ U and to 0 if v /∈ U . Here,

f ′ : OV,v −→ i∗(OZv)v is a map of OV,v-modules. For all s ∈ OV,v, we have f ′(s) =

f ′(s · 1) = f#V (s)f ′(1) = (f#V (s))(c + dε) for c, d ∈ k. Thus, any morphism of OV -

modules f : ω⊗kV −→ OZv is of the form s 7→ (f#V (πv(s)))(c + dε) for c, d ∈ k and we
see that it is induced by the restriction map followed by an endomorphism of OZv . We

want to prove that F (ϕ) is of the form s 7→ (f#V (πv(s)))(c + dε) with c 6= 0. This
must be true: ϕ has the property that when composed with any non-trivial endomor-
phism of OZx , the composition remains non-trivial (we can check this on the stalk OX,x).
As F maps non-trivial morphisms to non-trivial morphisms and induces isomorphisms
Hom(ω⊗kX ,OZx) ∼= Hom(ω⊗kY ,OZy) and End(OZx) ∼= End(OZy), we see that F (ϕ) must
have the same property: assume we have found a non-trivial element t ∈ End(OZy) such
that t ◦ F (ϕ) = 0, then we will find a non-trivial t′ ∈ End(OZx) with F (t′) = t and
t′ ◦ ϕ = 0 which is a contradiction. But if we have c = 0, then F (ϕ) will be of the form

s 7→ (f#V (πv(s)))(dε) and we see that its composition with the non-trivial endomorphism
“multiplication by ε” is trivial, which is a contradiction and thus c 6= 0. But if c 6= 0,
then multiplication by c+ dε is an automorphism of OZy (with inverse multiplication by
1
c −

d
c2
ε). This proves F (ϕ : ω⊗kX −→ OZx) ∼= ϕ′ : ω⊗kY −→ OZy and also immediately

implies the following: if ϕ induces a surjection Γ(X,ω⊗kX ) −→ Γ(X,OZx), then so must

ϕ′ : Γ(Y, ω⊗kY ) −→ Γ(Y,OZy). Thus ω⊗kY separates tangent vectors by lemma 1.19 from
chapter 1 which yields that it is very ample and thus we have finished the proof.

�

Remark: Throughout the proof of this main theorem, we have often assumed X to
have ample canonical bundle. However, one can easily check that it also suffices for X to
have ample anti-canonical bundle, i.e. to require that ω−1X is ample (we only used that

there exists an integer d - possibly negative - such that ωdX is very ample). Under this
assumption, we can use the same proof with only very minor modifications. Also, notice
that we never used that our equivalence F : Db(X) −→ Db(Y ) sends exact triangles
to exact triangles - it is enough to require that F commutes with the shift functors of
Db(X) and Db(Y ). A functor with this property is called graded.
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Reconstructing Chow groups

As we saw in the previous chapter, the proof of Bondal and Orlov’s theorem made
heavy use of the fact that we can actually transfer the geometry of X to the derived
category Db(X), by identifying closed points and invertible sheaves on X. The latter
corresponds to rational equivalence classes of closed subvarieties of codimension 1 when
considered as divisors on X. Thus, a natural question to consider is whether we can
reconstruct more of the geometry of X from its derived category. In view of the previous
results, a good candidate could be the additive structure of the Chow ring of X (which
will be referred to as the Chow group of X in the following), which would require us to
identify closed subvarieties of codimension r for any 0 ≤ r ≤ n via rational equivalence.
To answer this question, we need to pass to the slightly more general setting of tensor-
triangulated categories: so far, when we looked at the category Db(X) and we considered
it as a triangulated category. In fact, we never even used the triangles in Db(X) but only
worked with the graded structure of the category, i.e. we used its shift functor. In the
following, the triangles in Db(X) will play a role in the sense that we need them to define
thick subcategories. But we need more: note that forX smooth projective, Db(X) carries
the structure of a left-derived tensor product, an exact bi-functor Db(X) ×Db(X) −→
Db(X). With this additional structure, we can use the work of P. Balmer (cf. [Bal02],
[Bal05], [Bal09]) to achieve our goal.

1. Perfect complexes

Let X be an algebraic variety over an algebraically closed field and let F• be a
complex of OX -modules on X.

Definition 1.1. F• is called strictly perfect if X can be covered by opens Ui, i ∈ I such
that F•|Ui is a bounded complex of locally free sheaves of finite rank for all i. F• is called
perfect if it is locally quasi-isomorphic to a strictly perfect complex.

Definition 1.2. The category Dperf(X) of perfect complexes on X is defined as the full
subcategory of perfect complexes of Db(X).

Remark: We could also define Dperf(X) as the full subcategory of perfect complexes
of Db(Mod(X)). Indeed, by [Huy06, Corollary 3.4], we have that the natural inclusion
functor Db(Qcoh(X)) ↪→ Db

qcoh(Mod(X)) is an equivalence, where Db
qcoh(Mod(X)) is

the full subcategory of Db(Mod(X)) of complexes with quasi-coherent cohomology. Fur-
thermore, [Huy06, Proposition 3.5] says that the natural inclusion functor Db(X) ↪→
Db

coh(Qcoh(X)) is an equivalence, whereDb
coh(Qcoh(X)) is the full subcategory ofDb(Qcoh(X))

of complexes with coherent cohomology. These results say that the complexes inDb(Mod(X))
with coherent cohomology are exactly those coming from the natural inclusion Db(X) ↪→
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Db(Mod(X)). Now, let a be an element of the full subcategory of perfect complexes
of Db(Mod(X)). As quasi-isomorphisms preserve cohomology and locally free sheaves
are coherent, this means that a has coherent cohomology, which implies that it is an
element of Db(X). Thus it is also an element of Dperf(X). On the other hand, if
a ∈ Dperf(X), then a is automatically en element of the full subcategory of perfect
complexes of Db(Mod(X)) as we have the natural functor Db(X) ↪→ Db(Mod(X)

If X is smooth then we have the following fact (cf. [Huy06, Proposition 3.26]):

Proposition 1.3. If X is regular, then any F• ∈ Db(X) is isomorphic to a bounded
complex of locally free sheaves in Db(X).

This allows for the following conclusion which connects the theory for Db(X) we
have considered so far with the theory for Dperf(X) we will be looking at:

Corollary 1.4. If X is regular, then Dperf(X) = Db(X).

Proof. As we already have Dperf(X) ⊂ Db(X) as a full subcategory, we only need
to prove Dperf(X) ⊃ Db(X). Let a ∈ Db(X), then by proposition 1.3 a is isomorphic
to a bounded complex of locally free sheaves in Db(X). This means that it is quasi-
isomorphic to a strictly perfect complex which implies that it is perfect, which concludes
the proof. �

Remark: In this case, this shows that Dperf(X) is triangulated, as Db(X) is. How-
ever, this is true more generally as we will see later on.

Notation: In the following we will be mostly dealing with smooth projective vari-
eties. For them, we will use the notation Dperf(X) and Db(X) interchangeably, which is
justified by the preceding corollary.

2. Balmer’s prime spectrum

In this section, we define the setting we’ll be working in for the rest of this thesis
and present the results by P. Balmer that will be fundamental for our considerations.

Definition 2.1. Let K be a triangulated category. A subcategory L ⊂ K is called thick
if it is a full triangulated subcategory such that P ⊕Q ∈ A with P,Q ∈ A forces P ∈ A
and Q ∈ A.

Definition 2.2. A tensor-triangulated category is a triple (K,⊗, I), where K is a tri-
angulated category, ⊗ is a functor

⊗ : K ×K −→ K

that induces a symmetric monoidal structure on K and that is exact in each variable.
Furthermore, I is a unit with respect to ⊗, i.e. for all A ∈ K we have natural isomor-
phisms A⊗ I ∼= I⊗A ∼= A.

Notation: Mostly, we will simply write K for a tensor-triangulated category and
leave out ⊗ and I when there is no danger of confusion.

Example: For a smooth projective variety X, Db(X) is tensor-triangulated category
with the usual left-derived tensor product⊗L and unitOX . Recall that for two complexes
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E•,F•, we define the tensor product E• ⊗F• by

(E• ⊗F•)i =
⊕
p+q=i

Ep ⊗Fq with d = dF ⊗ 1 + (−1)idE

For all details in this special case, we refer the reader to [Huy06, Chapter 3.3]. Note
however that we really need the regularity of X to make sure that Db(X) = Dperf(X),
which makes the definition of ⊗L possible.

Definition 2.3. Let (K,⊗, I) be a tensor-triangulated category. A thick subcategory
L ⊂ K is called ⊗-thick if for all P ∈ L,Q ∈ K we have P ⊗Q ∈ L.

Example: Let (K,⊗, I) = (Dperf(X),⊗L,OX). Then, for some subset Y ⊂ X define
the full subcategory KY := {a ∈ Dperf(X)|supp(a) ⊂ Y }. This is a ⊗-thick subcategory
(cf. [Bal05, Lemma 3.4]).

Construction: Following [Bal05, Balmer], we can associate to a tensor-triangulated
category (K,⊗, I) a topological space Spc(K) and a sheaf of commutative rings OK
on Spc(K). In the case that X is a topologically noetherian scheme he shows that
(X,OX) ∼= (Spc(Dperf(X),ODperf(X)). In the following two sections, we will take a closer
look at this construction.

2.1. The associated topological space. In this section, K = (K,⊗, I) will always
denote a tensor-triangulated category with tensor product ⊗ and unit I.

Definition 2.4. Let A ⊂ K be a ⊗-thick subcategory. A is called prime if for every two
objects a, b ∈ K with a ⊗ b ∈ A we either have a ∈ A or b ∈ A. The radical of A is
defined as

√
A := {a ∈ K|a⊗n ∈ A for some n ∈ N}. A is called radical if

√
A = A.

Example: Let X be a smooth projective variety, Z ⊂ X a closed subset and x ∈ X
a point. Consider the ⊗L-thick subcategory Dperf

Z (X) of complexes a with supp(a) ⊂ Z.

Then Dperf
Z (X) is radical: indeed, as supp(a⊗

Ln) = supp(a) for all n ∈ N we see that

a⊗
Ln ∈ Dperf

Z (X) implies a ∈ Dperf
Z (X). Next, let Vx := {a ∈ Dperf(X)|ax ∼= 0 ∈

Dperf(OX,x)}. Then Vx is prime: indeed, let a ⊗L b ∈ Vx, then (a ⊗L b)x ∼= ax ⊗L bx ∼=
0 ∈ Dperf(OX,x). As the tensor product of two finitely generated local modules is zero
iff one of the modules is zero (cf. [Serre: Local Algebra, Corollary I.2.2]), this proves
the claim.

Now we define the spectrum Spc(K) as a set:

Definition 2.5. We define Spc(K) as the set of all prime subcategories of K. We
define a topology on Spc(K) by the basis of open sets U(a) := {P ∈ Spc(K)|a ∈ P} for
all a ∈ K. The closed complement of U(a) is denoted by supp(a) := Spc(K) \ U(a).

This is indeed a topology basis, which is proved in [Bal05, Remark 2.7]. In particular
we have the following nice lemma:

Lemma 2.6. Let a ∈ K, then

U(a⊕ b) = U(a) ∩ U(b) and U(a⊗ b) = U(a) ∪ U(b)

Proof. cf. [Bal05, Lemma 2.6] �

This allows for the following definition:
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Definition 2.7. The dimension of K, denoted by dim(K) is defined as the dimension
of Spc(K) as a topological space.

A useful property of the spectrum of a tensor-triangulated category is the following:

Proposition 2.8. Every non-empty, closed irreducible subset of Spc(K) has a unique
generic point.

Proof. cf. [Bal05, Proposition 2.18] �

Remark: If Spc(K) is a noetherian topological space, then this means that Spc(K)
is a Zariski space in the sense of [Har77, II.3 Exercise 3.17]. Balmer shows that Spc(K)
is noetherian (and thus a Zariski space) if and only if any closed subset of Spc(K) is the
support of an object of K (cf. [Bal05, Corollary 2.17]).

The most important application of Balmer’s theory for this thesis are the following
two theorems:

Theorem 2.9. Let S be the set of those subsets Y ⊂ Spc(K) of the form Y =
⋃
i∈I Yi

for closed subsets Yi of Spc(K) with Yi quasi-compact for all i ∈ I. Let R be the set of

radical ⊗-thick subcategories of K. Then there is an order-preserving bijection S
∼−→ R

given by

Y 7→ KY := {a ∈ K|supp(a) ⊂ Y }

with inverse

J 7→ supp(J) :=
⋃
a∈J

supp(a)

Proof. cf. [Bal05, Theorem 4.10] �

Remark: The statement of this theorem becomes easier, if we assume that all
⊗-thick subcategories are radical and that all closed subsets are of the form supp(a)
for some a ∈ K. Then it reads as a more or less direct generalization of Thomason’s
classification of thick subcategories, as stated in [Bal02, Corollary 2.8].

Theorem 2.10. Let X be a smooth projective variety. There is a homeomorphism

X
∼−→ Spc(Dperf(X))

x 7→ {a ∈ Dperf(X)|ax ∼= 0 ∈ Dperf(OX,x)}

Moreover, for any perfect complex a ∈ Dperf(X), the closed subset supp(a) in X corre-
sponds via f to the closed subset supp(a) in Spc(Dperf(X)).

Proof. cf. [Bal05, Corollary 5.6] �

Remark: We see that all closed subsets of Spc(Dperf(X)) are of the form supp(a) for
some a ∈ Dperf(X): let Z ⊂ Spc(Dperf(X)) be closed, then f−1(Z) ⊂ X is also closed.
Then by [Rou09, Lemma 4.7], there exists an a ∈ Dperf(X) with supp(a) = f−1(Z).
By the preceding theorem, this implies that Z = supp(a).
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2.2. The associated sheaf of rings. Before we take a closer look at the construc-
tion of the sheaf of rings OK , we first need to state an existence theorem for quotient
categories. We stick to the treatment in [Nee01, Chapter 2.1]

Definition 2.11. Let D, T be triangulated categories and F : D −→ T be a triangulated
functor. The kernel of F is defined as the full subcategory

ker(F ) := {a ∈ D|F (a) ∼= 0}.

The following theorem states that we can “divide out” by thick subcategories:

Theorem 2.12. Let D be a triangulated category and C ⊂ D be a thick subcategory. Then
there exists a triangulated category D/C and a triangulated functor Fun : D −→ D/C so
that ker(Fun) = C and Fun is universal with this property: if F : D −→ T is a triangulated
functor whose kernel contains C, then it factors uniquely as

D Fun−→ D/C −→ T

Proof. This is [Nee01, Theorem 2.1.8]. �

Remark: Actually, we don’t need C to be thick, however, if we drop this assumption
then we will only have C ⊂ ker(F ). The objects of D/C are just the objects of D, and
the functor Fun is the identity on objects (cf. [Nee01, Remark 2.1.10]). The essence of
the quotient category lies in the construction of the morphisms of D/C.

Definition 2.13. The category D/C is called the Verdier quotient of D by C and the
functor Fun is called the Verdier localization map.

Construction of the sheaf of rings: Let us now give an overview on how to
define the sheaf of rings OK on Spc(K), following [Bal05, Definition 6.1] and [Bal09,
Construction 6.1]. Let (K,⊗, I) be a tensor-triangulated category and U ⊂ Spc(K)
an open subset. Let Z := Spc(K) \ U be its closed complement and let KZ := {a ∈
K|supp(a) ⊂ Z} (this is a ⊗-thick subcategory of K, cf. [Bal05, Lemma 3.4]). Define
a sheaf OK on X as the sheafification of the presheaf

O′K : U 7→ End(K/KZ)(IU )

where the unit IU ∈ K/KZ is the image of the unit I of K via the localization K 7→
K/KZ . From the proof of [Bal02, Proposition 5.3] it follows that we have a presheaf

U 7→ K̃/KZ ,

where K̃/KZ is the idempotent completion of K/KZ . The restriction maps of this
presheaf induce the restriction maps of O′K : for V1 ⊂ V2, we have a tensor-triangulated

functor K̃/KZ2 −→ K̃/KZ1 which induces maps End
K̃/KZ2

(IV2) −→ End
K̃/KZ1

(IV1). As

the canonical functor that sends a category to its idempotent completion is fully faithful,
we have End

K̃/KZ2

(IV2) = EndK/KZ2
(IV2) and End

K̃/KZ1

(IV2) = EndK/KZ1
(IV1), which

means that we get restriction maps O′K(V2) −→ O′K(V1). One can check that these turn
O′K into a presheaf.

If K is k-linear for some field k, then O′K(Spc(K)) = EndK(I) is a k-vector space
and in particular we can embed k ↪→ O′K(Spc(K)) by sending a 7→ a · id for any a ∈ k
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(This is indeed a ring homomorphism: additivity is clear as EndK(I) is a k-vector space.
Multiplicativity follows from the fact that the composition of maps is bilinear). As we
have a homomorphism O′K −→ OK , this makes OK(Spc(K)) into a k-algebra. Now we
have the following:

Definition 2.14. Let (K,⊗, I) be a tensor-triangulated category. Then define the ringed
spaces

Spec(K) := (Spc(K),OK)

Theorem 2.15. Let (K,⊗, I) be a tensor-triangulated category such that every ⊗-thick
subcategory is radical. Then Spec(K) is a locally ringed space.

Proof. An announcement of the proof can be found in [Bal05, Remark 6.4], the
proof itself in [Bal09, Corollary 6.6]. �

Remark: According to [Bal05, Remark 6.4] it is an open question when Spec(K) is
actually a scheme. Therefore, we are forced to work with locally ringed spaces in general
and the analogies we can produce between schemes and tensor-triangulated categories
depend on how much theory for schemes is also valid for locally ringed spaces.

If we take K to be k-linear, we can make the following statement:

Lemma 2.16. Let (K,⊗, I) be a tensor-triangulated category that is k-linear and such
that every ⊗-thick subcategory is radical. Then there is a morphism of locally ringed
spaces Spec(K) −→ Spec(k).

Proof. This is immediate from the fact that k-linearity ofK implies thatOK(Spc(K))
is a k-algebra. Indeed, a morphism of locally ringed spaces consists of a pair (f, f#),
where f is a continuous map Spec(K) −→ Spec(k) and f# is a local homomorphism
of sheaves OSpec(k) −→ f∗(OK). Now, f is simply given by the projection Spc(K) −→
P , where P is the single point of Spec(k). To give a map of sheaves OSpec(k) −→
f∗(OK), it suffices to give a ring homomorphism f ′ : k −→ OK(Spc(K)) which exists as
OK(Spc(K)) is a k-algebra. To check that this homomorphism is local, simply remark
that f ′ sends invertible elements to invertible elements, the unique maximal ideal of any
local ring of Spec(K) consists of exactly the non-units of the ring and that 0 is the only
non-unit of k and its unique maximal ideal at the same time. �

Remark: The importance of this lemma arises from the fact that later on, we want
to take fibred products over k: for a smooth projective variety X over k we need to
define X ×k Spec(K), which requires the existence of the morphism described in the
previous lemma.

Now we can state Balmer’s full reconstruction theorem:

Theorem 2.17. For a topologically noetherian scheme X, we have that

Spec(Dperf(X)) ∼= X

Proof. cf. [Bal05, Theorem 6.3] �
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Remark: The following result by Balmer (cf. [Bal02, Theorem 2.13]) roughly
explains how the sheaf of rings are isomorphic: for a topologically noetherian scheme
X, U ⊂ X an open subscheme with closed complement Z, we have an equivalence of
categories

˜
Dperf(X)/Dperf

Z (X) −→ Dperf(U)

where
˜

Dperf(X)/Dperf
Z (X) is the idempotent completion ofDperf(X)/Dperf

Z (X) andDperf
Z (X)

is the thick subcategory of complexes with cohomological support in Z. From this, one
can deduce that End(IU ) = End(OX(U)) ∼= OX(U).

Before we start applying the concepts we introduced, we want to show a quick
example of how strong the machinery developed by Balmer is. It implies a variant of
Bondal and Orlov’s theorem:

Theorem 2.18. Let X,Y be smooth projective varieties and assume there is a tensor-
triangulated equivalence F : Db(X) −→ Db(Y ), i.e. an exact equivalence that commutes
with the tensor products on Db(X) and Db(Y ). Then X ∼= Y .

Proof. This is [Bal02, Theorem 9.7]. Note that for the proof found there, one uses
a slightly different definition of Spec(K). �

Remark: Here, we don’t require X to have ample (anti-)canonical bundle, so in
this sense the theorem is a generalization. However there is an obvious trade-off: we
do require the existence of a tensor-triangulated equivalence, which is much more than
just the graded equivalence we needed for the proof of Bondal and Orlov’s result. The
theorem does not hold if the equivalence is not tensor-triangulated (for counterexamples
cf. [Orl96]).

3. Reminder: rational equivalence

Our next goal is to transport the Chow group of a variety to the level of tensor-
triangulated categories. Therefore we need the notion of rational equivalence. Recall
the following definitions in the geometric setting:

Definition 3.1. Let X be a scheme. An algebraic k-cycle on X is an element of the
free abelian group generated by the closed irreducible subvarieties of dimension k in X,
i.e. an element of the form ∑

i

ni[Vi]

with Vi ⊂ X, dim(Vi) = k, ni ∈ Z for all i. Denote the free abelian group generated by
the closed irreducible subvarieties of dimension k in X by Zk(X).

Definition 3.2. Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces. Then f
is called dominant, if its image is dense in Y .

Definition 3.3. Let V be a scheme with irreducible components V1, . . . , Vt. The geo-
metric multiplicity of Vi in V is defined as

mi := length(OV ;Vi),
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the length of the local ring of Vi. The fundamental cycle of V is defined as

[V ] :=
∑
i

mi[Vi]

and is interpreted as an element of
⊕

k Zk(X).

Now we come to the definition of rational equivalence and Chow groups. We follow
[Ful98].

Definition 3.4. Let X be a smooth projective variety and let α ∈ Zk(X). α is called
rationally equivalent to zero if there exist k + 1-dimensional subvarieties V1, . . . , Vt ⊂
X ×P1 such that the natural projections πi : Vi −→ P1 are dominant morphisms and we
have that

α =
t∑
i=1

[Vi(0)]− [Vi(∞)]

where Vi(P ) is the projection of the scheme-theoretic fibre of πi over P to X. Two cycles
β, γ ∈ Zk(X) are called rationally equivalent if their difference is rationally equivalent
to zero.

Remark: In [Ful98] a definition of rational equivalence is given via divisors on
subvarieties on X. It is shown to be equivalent to the above definition in [Ful98,
Proposition 1.6]. Fulton also shows that the cycles rationally equivalent to zero form a
subgroup of Zn.

Definition 3.5. Let X be a smooth projective variety. For 0 ≤ n ≤ dim(X), let Zn0
be the subgroup of Zn(X) that consists of all cycles rationally equivalent to zero. Set
An(X) = Zn(X)/Zn0 and define the Chow group of X as the group

dim(X)⊕
n=0

An

4. Chow groups

In this section, we will define Chow groups for certain tensor-triangulated categories.
(∗) In the following, (K,⊗, I) is assumed to be a tensor-triangulated category with

the following properties:

• Every ⊗-thick subcategory of K is radical. (This can, for example, be achieved
by requiring K to be rigid (cf. [Bal09, Definition 1.5 and Section 6])).
• K is k-linear for some algebraically closed field k. Together with the preceding

property, this implies that Spec(K) is a locally ringed space over k (cf. Lemma
2.16).
• K is finite-dimensional (in the sense of definition 2.7).
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• For any closed subset Y ⊂ Spc(K) we have that Y = supp(a) for some a ∈
K. This implies that Spc(K) is a noetherian topological space (cf. [Bal05,
Corollary 2.17]). 1

The main example for such a category is given by Db(X), for X a smooth projective
variety.

Definition 4.1. Let J be a (radical) ⊗-thick subcategory of K. Then by theorem 2.9,
supp(J) = Y for some unique Y ⊂ Spc(K). J is called admissible if Y is closed and
irreducible.

Definition 4.2. Let (K,⊗, I) be a tensor-triangulated category. Denote by Zn(K) the
free abelian group on the admissible subcategories J with dim(supp(J)) = n. The ele-
ments of Zn(K) are called n-cycles in K.

Remark: As supp(J) ⊆ Spc(K), we must have dim(supp(J)) ≤ dim(Spc(K)) <∞
by assumption.

Definition 4.3. Let (X,OX) be a locally ringed space and Y ⊂ X be a closed irreducible
subset. The subvariety associated to Y is the locally ringed space (Y, (OX/IY )|Y ), where
IY ⊂ OX is the sheaf of ideals given by

U 7→ {s ∈ OX(U)|sP ∈ mP for all P ∈ U ∩ Y }
where mP is the maximal ideal of the local ring OX,P . We will also refer to the subvariety
associated to Y simply as the subvariety Y .

Remark: IY is indeed a sheaf of ideals: IY (U) is equal to
⋂
P∈U∩Y f

−1
P (mP ), where

fP : OX(U) −→ OX,P is the natural ring homomorphism. As the (arbitrary) intersection
of ideals is an ideal, IY (U) is one. It is clear that IY is compatible with the natural
restriction maps.

Example: Let X be a smooth projective variety and Y ⊂ X a closed irreducible
subset. Then the natural subvariety structure on Y coincides with the subvariety as-
sociated to Y defined above: indeed, the natural subvariety structure on Y is given by
the sheaf of ideals JY ⊂ OX , JY (U) = {s ∈ OX(U)|s vanishes on all P ∈ U ∩ Y }. But s
vanishing on all P ∈ U ∩ Y is equivalent to sP ∈ mP for all P ∈ U ∩ Y . This yields that
JY coincides with the sheaf of ideals IY defined above, which proves the claim.

Notation: Let J be an admissible subcategory. Then J = KY and denote by Z(J)
the subvariety associated to the closed subset Y ⊂ Spec(K). For a cycle α =

∑
i niAi

define Z(α) =
∑

i niZ(Ai).
Before we start with defining rational equivalence on Zn(K), we generalize geometric

multiplicities to ringed spaces

Definition 4.4. Let (X,OX) be a topologically noetherian, locally ringed space such
that every closed irreducible subset has a generic point and denote by Xi, i ∈ I the closed
irreducible components of X. Then the geometric multiplicity of Xi in X is given by

mi := length(OX,Pi),

1The condition seems a bit artificial, and it would be desirable to replace it by a simpler one on the
underlying category K. If we also demand that the bijection of 2.9 simplifies to Y being specialization-
closed subsets, then the pair (Spc(K), supp) becomes a classifying support data on K in the sense of
[Bal05, Definition 5.1]
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where OX,Pi is the local ring at the generic point Pi of Xi. We denote by [X] the formal
sum [X] :=

∑
im
′
iVi, where the Vi are the subvarieties associated to the underlying spaces

of Xi and

m′i =

{
mi if mi <∞
0 if mi =∞

Remark 1: As X is topologically noetherian, the decomposition of X into finitely
many irreducible components exists and is unique.

Remark 2: In this definition, we deal with the problem of infinite geometric multi-
plicities in a way that is hardly satisfying. The mi’s are finite if OX,Pi is artinian (which
implies that it is noetherian). It is easy to construct examples of locally ringed spaces
such that the mi’s are infinite (For example, just take any irreducible topological space
and the constant sheaf associated to a local ring that is not artinian). However we have
the following

Conjecture 4.5. Let K be a Hom-finite tensor-triangulated category and Xi, i ∈ I
irreducible components of Spec(K). Then length(OK,Pi) < ∞ where OK,Pi is the local
ring at the generic point Pi of Xi.

Remark: This conjecture is motivated by the fact that Dperf(X) is a Hom-finite
tensor-triangulated category for which length(OX,Pi) < ∞. The sheaf of rings OK is
defined via endomorphism rings of K and thus we hope that Hom-finiteness is the right
condition to ensure finite geometric multiplicities.

Notation: Let f : X −→ Y be a morphism of locally ringed spaces over an alge-
braically closed field k and let P ∈ Y . Then we denote by X(P ) := X ×k Spec(k(P ))
the fibre of f over the point P .

Now we have the tools to start defining the Chow group of a tensor-triangulated
category which satisfies the properties (∗).

Definition 4.6. Let (K,⊗, I) be a tensor-triangulated category and let α ∈ Zn(K). Then
α is called rationally equivalent to zero if there are subvarieties V1, . . . , Vt ⊂ Spec(K)×k
P1k of dimension n+ 1 such that the projections πi : Vi −→ P1k are dominant and

Z(α) =

t∑
i=1

[Vi(0)]− [Vi(∞)]

Here, we interpret Vi(P ) for P = 0,∞ as a subspace of Spec(K) via the projection
p : Spec(K)×k P1k −→ Spec(K).

In order to define the Chow group of a tensor-triangulated category with the prop-
erties (∗), we need to work “modulo rational equivalence”. This is made possible by the
following lemma:

Lemma 4.7. Let (K,⊗, I) be a tensor-triangulated category. The cycles rationally equiv-
alent to zero form a subgroup of Zn(K).

Proof. Let Z0 denote the subset of Zn(K) that contains all cycles rationally equiv-
alent to zero. We need to prove that Z0 is closed under addition and taking inverses. For
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the first property, let Z(α) =
∑t

i=1[Vi(0)]− [Vi(∞)] and Z(β) =
∑t

i=1[Wi(0)]− [Wi(∞)]
(with notations as in definition 4.6). Then

Z(α+ β) = Z(α) + Z(β) =
∑

i=1,...,t
A=V,W

[Ai(0)]− [Ai(∞)]

which proves that α + β is rationally equivalent to zero. Thus Z0 is closed under ad-
dition and we still need to prove that we can also take inverses: thus, let Z(α) =∑t

i=1[Vi(0)]− [Vi(∞)] ∈ Z0, then Z(−α) = −Z(α) =
∑t

i=1[Vi(∞)]− [Vi(0)]. Next, take

the automorphism 1
x of P1k that sends 0 7→ ∞ and∞ 7→ 0. This automorphism induces an

automorphism of ringed spaces on Spec(K)×kP1k, denote the images of the Vi under this
automorphism by V ′i for all i. Now it follows from our construction that V ′i (0) = Vi(∞)

and V ′i (∞) = Vi(0) and thus
∑t

i=1[V
′
i (0)]− [V ′i (∞)] =

∑t
i=1[Vi(∞)]− [Vi(0)] = Z(−α).

This proves that −α is rationally equivalent to zero which shows that Z0 is a subgroup
of Zn(K).

�

Now we are able to take quotients and define Chow groups on the category level.

Definition 4.8. Let K be a tensor-triangulated category. Denote by An(K) the group
Zn(K) modulo the subgroup of cycles rationally equivalent to zero. The rational Chow
group of K is defined as A(K) :=

⊕
nAn(K).

This definition is sensible when our categories come from projective varieties:

Theorem 4.9. Let X be a smooth projective variety. Then A(Db(X)) = A(X).

Proof. By the classification of radical ⊗-thick subcategories (cf. Theorem 2.9), we
have a bijection between Zn(Db(X)) and the free abelian group on the closed irreducible
subvarieties of Spec(K) ∼= X (cf. Theorem 2.17) of dimension n. As we showed earlier,
the “new“ definition of a subvariety (cf. Definition 4.3) coincides with the classical one
in the case that X is an algebraic variety and thus, it only remains to prove that rational
equivalence in Zn(Db(X) coincides with classical rational equivalence of algebraic cycles
under this bijection: let α, β be algebraic n-cycles that are rationally equivalent, i.e.
there are subvarieties V1, . . . , Vt ⊂ X ×k P1k of dimension n + 1, dominant over P1k such
that

α− β =

t∑
i=1

[Vi(0)]− [Vi(∞)]

Now, as we have Spec(Db(X)) ∼= X our bijection takes α, β to n-cyclesA,B in Zn(Db(X))
and the Vi will also define subvarieties W1, . . .Wt in Spec(Db(X)) ×k P1k of dimension

n+1 by the isomorphism Spec(Db(X)) ∼= X, which are dominant over P1k. We must have

Z(A−B) =
∑t

i=1[Wi(0)]− [Wi(∞)] which proves that A and B are rationally equivalent

as cycles in Zn(Db(X)). For the other implication, we can take cycles A,B ∈ Zn(Db(X))
and just reverse the argument we have used for the previous step to get that the algebraic
cycles Z(A), Z(B) in Zn(X) are rationally equivalent in the classical sense.

�

47



5. AN OUTLOOK TO INTERSECTION THEORY Chapter 3

5. An outlook to intersection theory

The theory created in the previous chapters at hand, we can almost define a mul-
tiplicative structure on the Chow group of tensor-triangulated categories. The main
obstruction that keeps us from doing this is that we do not know if Chow’s moving
lemma holds for our definition of rational equivalence. Let us explain the issue a bit
more closely: the problem arises from the fact that we only want to intersect subspaces
that “intersect properly” and therefore it is necessary to define an intersection product
on the equivalence classes of the Chow group. In the algebro-geometric setting, Chow’s
moving lemma tells us that the equivalence class of the intersection of two classes of
subvarieties does not depend on the choice of representatives and that we can always
find representatives that “intersect properly”. It is an open problem to prove a similar
result for general ringed spaces or at least for Spec(K).

However it is possible to define an intersection product for two admissible subcate-
gories of K which do intersect properly (cf. Definition 5.1), with values in the free abelian
group on admissible subcategories. First we need to define what “proper intersection”
means in the category-theoretic context.

Let A,B be two admissible subcategories such that A = KY and B = KZ for
two closed irreducible subsets Y,Z ∈ Spc(K). Then we claim that the intersection
A ∩ B is equal to KY ∩Z . Indeed, recall that KY = {a ∈ K|supp(a) ⊂ Y },KY =
{b ∈ K|supp(b) ⊂ Z} and KY ∩Z = {c ∈ K|supp(c) ⊂ Y ∩ Z}. We have that A ∩ B =
KY ∩KZ = {c ∈ K|supp(c) ⊂ Y and supp(c) ⊂ Z} = {c ∈ K|supp(c) ⊂ Y ∩Z} = KY ∩Z .
Now we make the following definition

Definition 5.1. Let A,B be two admissible subcategories. We say that A andB intersect
properly, if codim(supp(A ∩B)) = codim(supp(A)) + codim(supp(B)).

Remark: For a set X ⊂ Spc(K) we set codim(X) = dim(Spc(K))− dim(X).
Next, let J = KY , L = KZ be admissible subcategories. Assume that J and L

intersect properly and denote by Wj , j ∈ J the irreducible components of the intersection
Y ∩ Z. Then define

i(Wj) =
∑
k

(−1)klength(TorAk (A/IY ;Wj , A/IZ;Wj ))

where A is the local ring of Wj at its generic point (which exists by proposition 2.8) and
IY ;Wj and IZ;Wj are the local ideals of Y and Z at this point. This is in complete analogy
to the intersection multiplicity as defined in the classical case (cf. [Har77, Appendix
A]). Then define

J · L :=
∑
j

i(Wj)KWj

As before, it is not clear that the newly defined intersection multiplicities are finite and
we can circumvent this problem and state a corresponding conjecture as we did in the
previous section. However, we can easily check that this definition recovers the original
definition of the intersection product, if we choose K = Dperf(X) for a smooth projective
variety X:

Theorem 5.2. Let X be a smooth projective variety over an algebraically closed field
k. Then the intersection product on the admissible subcategories of Dperf(X) defined
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above agrees with the usual intersection product on irreducible subvarieties of X via the
bijection given in 2.9 and the isomorphism Spec(Dperf(X)) ∼= X.

Proof. First, we check that two admissible subcategories intersect properly if and
only if their geometric counterparts do. This follows immediately from definition 5.1, the
fact that KY ∩KZ = KY ∩Z (which we showed above) and the fact that two subvarieties
Y, Z intersect properly if codim(Y ∩ Z) = codim(Y ) + codim(supp(Z)).

Now take two admissible subcategories A = KY , B = KZ that intersect properly and
look at their intersection product

∑
j i(Wj)KWj . Via the bijection 2.9, it is clear that the

corresponding intersection product for Y · Z will be of the form
∑

j i(Wj)
′Wj . Now all

there is to do is check that i(Wj)
′ = i(Wj) for all j, which is clear as Spec (Dperf(X)) ∼=

X. On the other hand, take two subvarieties V,W that intersect properly. We already
know that KV and KW will intersect properly and as Spec (Dperf(X)) ∼= X, we will
have KV · KW =

∑
j i(Uj)KUj , where Uj are the irreducible components of V ∩ W .

The equality of the intersection multiplicities is a direct consequence of the isomorphism
Spec (Dperf(X)) ∼= X and their definition. �
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Additional theory

In this chapter, we present some results that are related to our previous results but
are not used to prove them. They show how to transport more geometrical notions to
certain adequate tensor-triangulated categories.

1. Geometric Categories and Hilbert functions

We begin with a definition that will help us define a generalization of the Hilbert
polynomial for a triangulated category endowed with cohomology and a Serre functor.

Definition 1.1. A geometric category is a pair ((K,⊗, I), H), where

• (K,⊗, I) is a finite-dimensional, k-linear tensor-triangulated category;
• H is a cohomological functor K −→ Mod(Spec(K), where Mod(Spec(K)) is the

category of OK-modules on Spec(K);
• K is a equipped with a unique Serre fuctor S. (The uniqueness could, for

example, be achieved if K is also Hom-finite).

The previous definition enables us to get hold of a function that is a generalization
of the Hilbert polynomial of an algebraic variety:

Definition 1.2. Let ((K,⊗, I), H) be a geometric category. Then define its almost-
Hilbert function, denoted by aHfK as follows: for m ∈ Z set O(m) := H(Sm(I)[−mn]) ∈
Mod(Spec(K)), where I is the unit object of K and n is the dimension of the topological
space Spc(K). Then aHfK(k) = χ(O(k)), where χ denotes the Euler characteristic.

Remark 1: As K is k-linear, the cohomology groups Hn(O(k)) are k-vector spaces
and thus we can compute Euler characteristics.

Remark 2: By definition, we have dim (Spc(K)) <∞, and therefore O(k) is well-
defined. However, it may happen that aHfK(k) = χ(O(k)) =∞.

Example: Let X be smooth projective variety with very ample canonical bundle
and look at Db(X) = Dperf(X). Then (Db(X), H0), where H0 is the standard 0-th
cohomology, is a geometric category: indeed, Balmer’s reconstruction says that X ∼=
Spec(Db(X)) and thus H has the right codomain. Db(X) is also equipped with a Serre
functor, which is given by ⊗ωX [n], where n = dim(X). Now, O(m) =

H0(OX [0]⊗ω⊗mX [mn][−mn]) = H0(OX [0]⊗ω⊗mX ) = H0(OX [0])⊗ω⊗mX = OX⊗ω⊗mX ∼= OX(m)

where OX(m) is the m-th twisting sheaf of Serre and we used that cohomology commutes
with tensoring with a locally free sheaf and that ωX is very ample. Therefore, in this case,
we see that the almost-Hilbert function of Db(X) coincides with the Hilbert polynomial
of X relative to the embedding given by ωX (cf. [Har77, Exercise III.5.2]). Note that if
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we relax the condition on ωX to be only ample, then we get a function P ′(x) such that
the Hilbert polynomial P (x) is given by P ′(dx) for some fixed d ∈ Z.

With the help of almost-Hilbert functions we can extend various notions of geometric
invariants to geometric categories. For example, we can make the following definition:

Definition 1.3. Let (K,H) be a geometric category such that K is equipped with a Serre
functor S. Then define the arithmetic genus of (K,H, S) as pa(K,H, S) = aHfK(0).

Example: Let K = Db(X), where X is a smooth projective variety with ample
canonical sheaf. In the previous example, we have seen that aHfDb(X) is a function

P ′(x) such that the Hilbert polynomial PX(x) is given by P ′(dx) for some fixed d ∈ Z.
Now we see that pa(X) = PX(0) = P ′(0) and thus we see that we have recovered the
arithmetic genus of X.

2. Geometric product categories

For two smooth projective varieties X,Y we can look at the tensor-triangulated
categories Db(X), Db(Y ) and ask if there is a way to generalize the “product category”
Db(X ×k Y ) (note that this is not equal to the cartesian product Db(X) × Db(Y )).
It turns out that Balmer’s reconstruction theorem makes the construction of such a
category possible.

So far, we’ve only defined Dperf(X) for X an algebraic variety. The definition easily
generalizes to arbitrary ringed spaces:

Definition 2.1. Let (X,OX) be a ringed space. A strictly perfect complex on X is a
complex a of sheaves of OX-modules such that a is locally isomorphic to a complex of free
OX-modules of finite rank. A perfect complex is a complex of sheaves of OX-modules
that is locally quasi-isomorphic to a strictly perfect complex. Denote by Dperf(X) the full
subcategory of Db(Mod(X)) consisting of the perfect complexes.

Remark: By the remark after definition 1.2 of the previous chapter, this is a sensible
generalization, as for X and algebraic variety, both definitions of Dperf(X) coincide.

For arbitrary ringed spaces, we no longer have Dperf(X) = Db(X) as we have not
defined the latter for this situation. Thus we will need to do a bit of work to make sure
that Dperf(X) is triangulated. Furthermore, we also want to give it a tensor structure.
Both statements are given by the following proposition:

Proposition 2.2. Let (X,OX) be a ringed space. Then Dperf(X) is a tensor-triangulated
category.

Proof. It is easy to see that the left-derived tensor product ⊗L with unit OX
induces a tensor-structure on Dperf(X). Next, we prove that Dperf(X) is triangulated.
By definition, we have that Dperf(X) ⊂ Db(Mod(X)), it is a full subcategory of the
bounded derived category of OX -modules. The latter is triangulated as Mod(X) is
abelian (cf. [Har77, Example III.1.0.4]) and thus we only have to check that Dperf(X)
is stable under isomorphisms, shifts and taking cones (cf. [Nee01, Definition 1.5.1]). It
is clear that a complex isomorphic to a perfect complex is perfect and that the shift of
a perfect complex is still perfect. Thus, it remains to prove that the mapping cone of a
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morphism of perfect complexes is in Dperf(X). Thus, let f : A• −→ B• be a morphism
in Dperf(X), then the mapping cone C(f) is given by the complex

C(f)i := Ai+1 ⊕Bi with differentials diC(f) :=

(
−di+1 0
f i+1 diB

)
The direct sum of two perfect complexes is perfect as the direct sum of two locally
free sheaves is locally free. This shows that Dperf(X) is stable under taking cones and
therefore concludes the proof. �

Now we are ready to construct a tensor-triangulated category that generalizes the
“product category” as mentioned at the beginning of this section.

Definition 2.3. Let K, L be tensor-triangulated categories that satisfy the conditions
(∗) of chapter 3, section 4. The geometric product category of K and L is the category
P (K,L) := Dperf(Spec(K) ×k Spec(L)), where Spec(K) ×k Spec(L) is the fibred product
of the ringed spaces Spec(K) and Spec(L) over Spec(k).

Remark: By the previous proposition, P (K,L) is tensor-triangulated. Note that
we do not claim that Spec(P (K,L)) ∼= Spec(K)×k Spec (L) in general and it seems an
interesting open problem to find out exactly when this equality holds. However, we have
the following example, which shows that it is true for the special case where K,L come
from varieties. Thus, in this sense our definition generalizes the “product category” as
mentioned before.

Example: LetX,Y be smooth projective varieties. ThenDb(X×Y ) is the geometric
product category of Db(X) and Db(Y ): indeed, Spec(Db(X)) ∼= X, Spec(Db(Y )) ∼= Y
and Dperf(Spec(Db(X))× Spec(Db(Y ))) = Dperf(X × Y ) = Db(X × Y ).
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