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Abstract

It this thesis we investigate whether an analogue of the von Neumann Bicommutant Theorem
and related results are valid for Riesz spaces. Let H be a Hilbert space and D ⊂ Lb(H) a
∗-invariant subset. The bicommutant D ′′ equals P(D ′)′, where P(D ′) denotes the set of pro-
jections in D ′. Since the sets D ′′ and P(D ′)′ agree, there are multiple possibilities to define
an analogue of bicommutant for Riesz spaces. Let E be a Dedekind complete Riesz space and
A ⊂ Ln(E) a subset. Since the band generated by the projections in Ln(E) is given by Orth(E)
and order projections in the commutant correspond bijectively to reducing bands, our approach
is to define the bicommutant of A on E by U := (A ′ ∩Orth(E))′.

Our first result is that the bicommutant U equals {T ∈ Ln(E) : T is reduced by every A -
reducing band}. Hence U is fully characterized by its reducing bands. This is the analogue
of the fact that each von Neumann algebra in Lb(H) is reflexive. This result is based on the
following two observations. Firstly, in Riesz spaces there is a one-to-one correspondence between
bands and order projections, instead of a one-to-one correspondence between closed subspaces
and projections. Secondly, every ∗-invariant subset of Lb(H) is reduced by each invariant sub-
space. Therefore, “invariant closed subspaces” is replaced by “reducing bands” in the reflexivity
result. Similarly, we obtain Schur’s Lemma with “invariant subspaces” replaced by “reducing
bands”. There is no natural counterpart of the adjoint for Riesz spaces. However, we may
define A ⊂ Ln(E) to have the ∗-property, if every A -invariant band is reducing. If A has the
∗-property, we obtain our classical reflexivity result and Schur’s Lemma as known for Hilbert
spaces. An instance in which A has the ∗-property is a subgroup A of the Riesz automorphisms
on E.

Furthermore, we obtain that the bicommutant U is a unital band algebra. Conversely, if A
is a unital band algebra with the ∗-property and x ∈ E, then, for every operator T ∈ U , the
element Tx is approached in order by a net from A x. If E is atomic, we get approximation
in order of each T ∈ U by a net of operators from A . Therefore, if E is an atomic Dedekind
complete Riesz space and A ⊂ Ln(E) has the ∗-property, then A equals its bicommutant
(A ′ ∩ Orth(E))′ if and only if A is a unital band algebra. So we retrieve an analogue of the
von Neumann Bicommutant Theorem for atomic Riesz spaces. A direct consequence of the
von Neumann Bicommutant Theorem is that each von Neumann algebra is the commutant of a
group of unitaries. Similarly, the order bicommutant (A ′∩Orth(E))′ is the commutant of some
group of invertible orthomorphisms for every A ⊂ Ln(E). Combining these facts gives that, if
E is atomic, then each A ⊂ Ln(E) with the ∗-property is a unital band algebra if and only if
A is the commutant of some group of invertible orthomorphisms.

To obtain the above results, we study operator algebras on Riesz spaces, a subject which is
hardly treated in literature at the moment. Moreover, we deal with invariance questions under
a set of operators on a Riesz space.
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1 Introduction

1.1 Motivation

A unital strongly closed sub-C∗-algebra of the bounded operators Lb(H) on a Hilbert space H
was considered by von Neumann considered in [NE]. Later, such an algebra came to be known
as a von Neumann algebra. The fundamental theorem of the paper states that a von Neumann
algebra is equal to its own bicommutant. Moreover, it states the bicommutant of ∗-invariant
subsets A ⊂ Lb(H) is always a von Neumann algebra. Nowadays this theorem is known as the
von Neumann Bicommutant Theorem. It is the fundamental result in the study of von Neumann
algebras.

Von Neumann’s motivation for studying this subject was plurifold. One of the main moti-
vations for his study was the connection with representation theory. Since then representation
theory on Hilbert spaces has been well-developed and von Neumann algebras play a key role
in this theory. However, positive group representations can be naturally generalized to Banach
lattices. This procedure is done in [WO]. The question then arises if there is an analogue of
a von Neumann algebra for Banach lattices. Our approach is to address this question for the
more general class of Riesz spaces and zoom in on subclasses, if neccesary. A von Neumann
algebra occurs as the bicommutant of set of operators. Since the concept of a bicommutant
can be defined on Riesz spaces, we can study the existence of analogues of the von Neumann
Bicommutant Theorem and related results for Riesz spaces as a first step. This will be the main
subject of this thesis.

The key ingredients of the von Neumann Bicommutant Theorem and related results are the
orthogonal structure of a Hilbert space, the strong and weak operator topologies and the spec-
tral theorem for normal operators. Fortunately, it is possible to define an orthogonality concept
for Riesz spaces comparable to the one on Hilbert spaces. The notion of orthogonal elements
on Riesz spaces also leads to projections, which play an important role in the proof of the von
Neumann Bicommutant Theorem. Furthermore, we can define order convergence for nets on
Riesz spaces with properties similar to those of convergence in the strong operator topology.
Finally, with the Freudenthal Spectral Theorem we are able to consider the building blocks of
operators on Riesz spaces, as can be done with the spectral theorem for normal operators on
Hilbert spaces. This all motivates our study of the bicommutant for operators on Riesz spaces
in order to retrieve a similar theory as known for von Neumann algebras on Hilbert spaces.

1.2 Related work

The question whether an analogue of the von Neumann Bicommutant Theorem holds for a set
of operators A on a Banach space X, is a well-known problem. Does the bicommutant of A
coincide with the closure of the algebra generated by A (and the identity operator) in the strong
(or weak) topology? Here we give a summary of work already done in this direction. A complete
discussion and a comparison with our results is presented in section 11.
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Especially progress has been made, when X is a function space and A consists of multiplication
operators. In [PR] de Pagter and Ricker showed that, if X is an Lp-spaces with 1 ≤ p < ∞,
such a bicommutant theorem is valid for any algebra of multiplication operators. In [KI] Ki-
tover investigated the situation X = C(K), where K is a metrizable compact space. In this
article necessary and sufficient conditions on K are presented for a bicommutant theorem to be
valid. However, there are examples when such a bicommutant theorem does not hold for a set
of multiplication operators A . Such an example can be found in [DI].

Another direction in which research on an analogue of the von Neumann Bicommutant Theorem
has evolved, is the case where X is a reflexive Banach space. In [DA] Daws proved that under
certain conditions on X the weak closure of the range A of a bounded homomorphism, from a
unital Banach algebra into Lb(X), equals its bicommutant. Furthermore, given a unital Banach
algebra U , there exists a reflexive Banach space E and an isometric homomorphism U → Lb(E)
such that the range A equals its own bicommutant.

The projections P(X) on a Banach space X can be ordered by range inclusion. A last case,
when A ⊂ P(X) is a Boolean algebra of projections, is studied by de Pagter and Ricker in [PI].
There are conditions on A ensuring a bicommutant theorem holds true.

1.3 Questions

To make a distinction between the bicommutant taken in the operators on a Hilbert space or on a
Riesz space, we talk about the von Neumann bicommutant, respectively the order bicommutant.

When wondering if a theory on the order bicommutant is fruitful, it is natural to ask if the
basic results about the von Neumann bicommutant hold true for the order bicommutant as well.
This will be our main subject of study. We restrict ourself to the following questions derived
from fundamental results known for the von Neumann bicommutant.

Q1: Description of the bicommutant

The von Neumann bicommutant is a strongly closed unital algebra. Can we derive such a
description for the order bicommutant?

Q2: Reflexivity

Using the spectral theorem for normal operators on a Hilbert space, we obtain that the von
Neumann bicommutant of a ∗-invariant subset of Lb(H) is reflexive. This means the von
Neumann bicommutant is completely determined by its invariant closed subspaces. Re-
flexivity can also be defined for sets of operators on Riesz spaces. Is the order bicommutant
reflexive? There is no natural counterpart of the adjoint for operators on Riesz spaces.
How can this obstruction be solved? Is it a necessary ingredient for proving reflexivity?

Q3: Schur’s Lemma

Schur’s Lemma is a standard result in representation theory. It states that the com-
mutant of a ∗-closed subset A of Lb(H) consists of multiples of the identity if and only if
A leaves only the trivial subspaces invariant. Does Schur’s Lemma have an analogue for
Riesz spaces? What to do with the ∗-invariance?
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Q4: Approximation results

Let A ⊂ Lb(H) be a unital strongly closed ∗-invariant algebra. By the von Neumann
Bicommutant Theorem A equals its own von Neumann bicommutant. In the proof of the
theorem we approximate an operator in the von Neumann bicommutant of A by a net of
operators in A . First this approximation is obtained pointwise. From that we derive global
approximation in the strong operator topology by a diagonalization process. Is pointwise
and global approximation in order possible for the order bicommutant? Furthermore, does
the diagonalization process still work?

Q5: Bicommutant theorem

Using the approximation results for the von Neumann bicommutant we obtain the von
Neumann Bicommutant Theorem. Is there a counterpart of this theorem for Riesz spaces?
A direct consequence of this theorem is that von Neumann algebras are the commutant of
a group of unitaries. If a bicommutant theorem proves to be true, is there an analogue of
this consequence?

If A is a ∗-closed subset of Lb(H) and A ′ denotes its commutant, the von Neumann bicommutant
of A equals the commutant of the projections in A ′. Since the notion of projections is also
known for Riesz spaces, there are different possibilities for defining the order bicommutant
in a Riesz space. It may be possible that those definitions do not coincide when considering
operators on Riesz spaces. So, besides the questions mentioned above, we also investigate what
is the ‘right’ analogous definition for the order bicommutant such that most of the structure of
the von Neumann bicommutant is preserved.

1.4 Outline and prerequisites

The five questions formulated above are inspired by fundamental results known for the von
Neumann bicommutant. Therefore, in section 2 we first treat the five questions for the von
Neumann bicommutant such that we can refer to the methods and techniques used here. The
reader is presumed to be familiar with operator theory on Hilbert spaces. In particular, we
assume familiarity with the strong operator topology and some basic C∗-algebra theory.

In section 3 we give a short overview of the theory of Riesz spaces necessary for understanding
the proofs. This overview is intended for the reader unfamiliar with ordered vector spaces and
Riesz spaces. Furthermore, we introduce the main examples that will illustrate our results. Op-
erator theory for Riesz spaces is treated in section 4. We start with some basic material, which is
present in most of the literature on the subject. From paragraph 4.2 onward we will focus on op-
erator algebras on Riesz spaces, a subject which is hardly treated in the literature at the moment.

In section 5 we give a short overview of the theory of orthomorphisms and in particular pro-
jections. We give some necessary results about atomic Riesz spaces in section 6 and about the
Freudenthal Spectral Theorem in section 7. In section 8 we consider the commutant. We derive
some results, which prepare us for answering the five questions formulated above. However, they
should also be considered as interesting in their own right. Finally, in section 9 we treat the five
questions for the order bicommutant and we obtain our main results. A summary of the results
gathered here, can be found in section 10. As already mentioned, a complete discussion about
the literature on the subject and a comparison with our results is presented in section 11.
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2 Von Neumann Bicommutant Theorems

2.1 Definition. Let A be a subset of the bounded operators Lb(H) on a Hilbert space H. The
commutant of A is defined by

A ′ = {S ∈ Lb(H) : ST = TS for all T ∈ A }.

The von Neumann bicommutant is given by the set A ′′ := (A ′)′.

The answers to the five questions, as formulated in the introduction, are well-known in the case
of the von Neumann bicommutant. In our route of answering these questions for the order
bicommutant, we will use a similar approach. Therefore, we fully treat the five questions for
the von Neumann bicommutant in this section, in order to refer to the methods and techniques
when dealing with the order bicommutant. A more complete discussion on the von Neumann
bicommutant, as well as most of the proofs given here, can be found in [CO]. Before we start
our discussion, the following property of the von Neumann bicommutant is worthwhile noticing.

2.2 Proposition. Let H be a Hilbert space and A ⊂ Lb(H). Take U = A ′′. The commutant
U ′ coincides with A ′. Moreover, U equals its own von Neumann bicommutant U ′′.

Proof. Since A is obviously contained in U , it follows U ′ is contained in A ′. Conversely,
any operator S ∈ A ′ commutes with all operators in U and is therefore contained in U ′. We
conclude A ′ = U ′. Taking the commutant once again, the second claim U = U ′′ follows.

2.1 Q1: a description of the von Neumann bicommutant

To describe the von Neumann bicommutant, we first consider the commutant.

2.3 Proposition. Let A ⊂ Lb(H) be a subset. The commutant A ′ is a strongly closed full1

algebra containing the identity operator I. Furthermore, if A is closed under taking adjoints,
then A ′ is also ∗-closed.

Proof. It is immediate A ′ is an algebra containing I. Suppose S ∈ A ′ is invertible. Each T ∈ A
satisfies ST = TS. Applying S−1 on both sides of the previous identity yields TS−1 = S−1T .
Therefore, S−1 is in A ′. Hence A ′ is a full algebra. We show A ′ is strongly closed. Let {Sλ}λ
be a net in A ′ strongly convergent to some S ∈ Lb(H). Take T ∈ A . For each x ∈ H we have

‖(ST − TS)x‖ ≤ ‖(S − Sλ)Tx‖+ ‖T‖‖(S − Sλ)x‖ → 0

by strong convergence of {Sλ}λ to S. It follows T commutes with S for each T ∈ A and therefore
we have S ∈ A ′. We conclude that A ′ is a strongly closed full algebra containing I. Now suppose
A is ∗-closed. Let S ∈ A ′. For all T ∈ A the identity S∗T = (T ∗S)∗ = (ST ∗)∗ = TS∗ holds,
since T ∗ is in A by assumption. Hence S∗ commutes with all T ∈ A and therefore S∗ is an
element of A ′. We conclude that A ′ is closed under taking adjoints.

2.4 Corollary. Let A ⊂ Lb(H) be a subset. The von Neumann bicommutant A ′′ is a strongly
closed algebra containing the identity operator I.

1That is, if S ∈ A ′ is invertible in Lb(H), then S−1 is contained in A ′.
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2.2 Q2: reflexivity

2.5 Definition. Let V be a vector space and A ⊂ V a subset. An operator T on V leaves
A invariant if TA ⊂ A holds. In this case A is called T -invariant. Furthermore, a subset A
of the linear operators L(V ) on V leaves A invariant, if T leaves A invariant for each T ∈ A .
Similarly, A is called A -invariant in that case.

2.6 Definition. Let H be a Hilbert space and B ⊂ H a closed subspace. The subspace B
reduces an operator T on H, if TB ⊂ B and TB⊥ ⊂ B⊥ holds. In this case B is called T -
reducing. Similarly, B reduces A ⊂ L(H), if B reduces T for each T ∈ A . In that case B is
called A -reducing.

Reflexive operator algebras are characterized by their invariant subspaces.

2.7 Definition. Let H be an Hilbert space. A subset A ⊂ Lb(H) is reflexive, if it is equal to
the algebra of bounded operators which leave invariant each closed subspace, left invariant by
A .

We first need some auxiliary statements (which appear to have analogues in the case of the order
bicommutant) to obtain the reflexivity result of the von Neumann bicommutant. The notions
of invariant and reducing subspaces coincide for subsets of the bounded operators closed under
taking adjoints.

2.8 Lemma. Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset, then a subspace
B ⊂ H reduces A if and only if B is A -invariant.

Proof. If B ⊂ H reduces A , then B is A -invariant. Conversely, suppose B ⊂ H is invariant
under A . Let x ∈ B⊥ and T ∈ A . For all y ∈ B we have 〈y, Tx〉 = 〈T ∗y, x〉 = 0, because T ∗y
is an element of B, using that A is ∗-closed and leaves B invariant. It follows Tx ∈ B⊥ for all
x ∈ B⊥ and T ∈ A . So B⊥ is also invariant under A . We conclude that B reduces A .

With the previous we derive an important lemma, which is on the core of most of the von
Neumann Bicommutant Theorems.

2.9 Lemma (Projection Lemma). Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset.
A projection P : H → H is in A ′ if and only if the closed subspace ran(P ) is invariant under
A .

Proof. Suppose P is in the commutant A ′. Put B = ran(P ). For all T ∈ A we have

TB = TPB = PTB ⊂ B

and therefore A leaves B invariant. Conversely, suppose B = ran(P ) is invariant under A . By
2.8 it follows that B⊥ is also invariant under A . For x ∈ H we have

PTx = PTPx+ PT (I − P )x = TPx,

since TPx is an element of B and T (I − P )x is in B⊥. It follows P ∈ A ′.

The last lemma, that we need for the reflexivity result, is a consequence of the spectral theorem
for normal operators on a Hilbert space.
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2.10 Lemma. Let H be a Hilbert space. If A is a strongly closed ∗-invariant algebra of Lb(H),
then A is the norm closure of the linear span of the set P(A ) of projections in A .

Proof. [CN, Proposition IX.4.8]

Our reflexivity result will be a consequence of the following proposition.

2.11 Proposition. Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset. The von
Neumann bicommutant A ′′ equals P(A ′)′.

Proof. The inclusion A ′′ ⊂ P(A ′)′ is trivial, because P(A ′) is contained in A ′. For the
other inclusion take R ∈ P(A ′)′. By 2.3 A ′ is a strongly closed ∗-invariant algebra. Hence
A ′ = span(P(A ′)) holds by 2.10. Since R commutes with all projections in A ′, it is clear R
commutes with all linear combinations from P(A ′). So R is in the commutant of span(P(A ′)).
Finally, let S ∈ A ′, then there exists a sequence Sn ∈ span(P(A ′)) such that Sn converges to
S in norm. We derive

‖SR−RS‖ ≤ ‖S − Sn‖‖R‖+ ‖R‖‖S − Sn‖ → 0.

We conclude that R commutes with all S ∈ A ′ and therefore R is in A ′′. This shows the other
inclusion P(A ′)′ ⊂ A ′′.

Now, using the projection Lemma 2.9, we are able to obtain the reflexivity result for the von
Neumann bicommutant.

2.12 Theorem. Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset. The von
Neumann bicommutant A ′′ is equal to

A inv := {T ∈ Lb(H) : T leaves every A -invariant closed subspace invariant}.

Proof. Suppose T ∈ A ′′. Let B be an A -invariant closed subspace and denote by P the
projection on B. By 2.9 P is in A ′. So P commutes with T . For x ∈ B we obtain

Tx = TPx = PTx ∈ B.

Therefore, B is T -invariant. This yields T ∈ A inv and thus A ′′ is a subset of A inv.

Conversely, let T ∈ A inv. Let P ∈ P(A ′) be a projection in A ′ and let the closed sub-
space B be the range of P . Clearly, the projection I − P is an element of A ′ by 2.3. Hence
B = ran(P ) and B⊥ = ran(I − P ) are A -invariant by 2.9. So B and B⊥ are also T -invariant.
For x ∈ H we obtain

PTx = PTPx+ PT (I − P )x = TPx.

Therefore, T commutes with P . We conclude that T commutes with all projections in A ′. So
T is in P(A ′)′. Proposition 2.11 finally yields T ∈ A ′′. So A inv is also a subset of A ′′ and we
conclude A inv = A′′.

2.13 Corollary. Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset. The von
Neumann bicommutant A ′′ is reflexive.

Proof. Let U = A ′′. By applying 2.3 twice U is closed under taking adjoints. We have
U = U ′′ = U inv by combining 2.2 and 2.12. So U is reflexive.
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Combining the last two results, we obtain that all reflexive ∗-invariant subsets of Lb(H) are von
Neumann algebras.

2.14 Corollary. Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset. Then A is
reflexive if and only if A equals its von Neumann bicommutant A ′′.

2.3 Q3: Schur’s Lemma

Schur’s Lemma is a classical result in representation theory for Hilbert spaces. It can immediately
be derived from the results obtained in the previous paragraph.

2.15 Theorem (Schur’s Lemma). Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset.
The following statements are equivalent.

i. The only closed invariant subspaces for A are the trivial ones: {0} and H.

ii. The commutant A ′ consists of multiples of the identity operator I ∈ Lb(H).

Proof. Suppose (i) holds. Let P ∈ P(A ′) be a projection in A ′ and B = ran(P ) its range.
By the projection Lemma 2.9 B is A -invariant. By assumption B is trivial and hence P is ei-
ther 0 or I. Now applying 2.10 we conclude that A ′ consists of multiples of the identity operator.

Conversely, assume (ii). Take B ⊂ H an A -invariant closed subspace. By 2.9 the projec-
tion P on B is in A ′. Our assumption yields P(A ′) = {0, I} and thus P is either 0 or I. We
conclude that B is a trivial subspace. So the only closed invariant subspaces for A are the
trivial ones.

2.4 Q4: approximation results

We approximate operators in the von Neumann bicommutant A ′′ with operators from A . Since
A ′′ is a unital algebra by 2.4 it is natural to require that A is also a unital algebra to obtain
some approximation results. We take A closed under taking adjoints to be able to use the
projection Lemma 2.9. First we obtain a pointwise approximation result.

2.16 Proposition (Pointwise approximation). Let H be a Hilbert space and A ⊂ H be a ∗-
closed algebra with I ∈ A . For all T ∈ A ′′ and x ∈ H there exists a sequence {Sn}n in A such
that {Snx}n converges to Tx.

Proof. Take T ∈ A ′′ and x ∈ H. Since A is an algebra, A x = {Sx : S ∈ A } is a subspace
invariant under A . Define the closed subspace B = A x. We claim B is still A -invariant.
Indeed, let y ∈ B and let yn ∈ A x be a sequence in A x converging to y. Take S ∈ A . Then
for all n ∈ N we have Syn ∈ A x ⊂ B, because A leaves A x invariant. Since A is contained in
the bounded operators, we have Syn → Sy if n → ∞. It follows Sy ∈ B by the fact that B is
closed. So B is A -invariant.

Let P be the projection on the closed subspace B. By 2.9 P is contained in A ′. There-
fore, T commutes with P . Using I is contained in A , we derive x ∈ A x ⊂ B. Therefore, we
derive

Tx = TPx = PTx ∈ B.
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We conclude that there exists some sequence {Sn}n in A such that Snx→ Tx.

By looking at the product of n copies of our Hilbert space H, we obtain global approximation
in the strong operator topology.

2.17 Lemma. Let n ∈ N and H a Hilbert space. Let A ⊂ Lb(H). Consider the product Hilbert
space Hn = {(y1, . . . , yn) : yi ∈ H for i = 1, . . . , n}. For R ∈ Lb(H) define Rn ∈ Lb(Hn) given
by Rn(y1, . . . , yn) = (Ry1, . . . , Ryn). For U ⊂ Lb(H) define Un = {Sn ∈ Lb(H) : S ∈ A }. We
have the inclusion (A ′′)n ⊂ (An)′′.

Proof. Let An ∈ (A ′′)n for some A ∈ A ′′ and B = [Bij ] ∈ (An)′. Let C ∈ A , then B commutes
with Cn ∈ A n. We obtain the identity

[BijC] = BCn = CnB = [CBij ].

It follows Bij ∈ A ′ for each i, j and thus A commutes with Bij . We conclude

AnB = [ABij ] = [BijA] = BAn.

Therefore, An is an element of (An)′′. We have shown (A ′′)n ⊂ (An)′′.

2.18 Proposition (Global approximation). Let H be a Hilbert space and A ⊂ H be a ∗-closed
algebra with I ∈ A . For all T ∈ A ′′ there exists a net {Sα}α in A strongly convergent to T .

Proof. Let T ∈ A ′′. Let U ⊂ H be a strongly open neighborhood of T . We show A ∩U 6= ∅.
By the properties of the strong operator topology there exists n ∈ N, x1, . . . , xn ∈ H and
ε1, . . . , εn > 0 such that

T ∈
n⋂
i=1

{S ∈ Lb(H) : ‖Sxi − Txi‖ < εi} ⊂ U .

Now consider the diagonal set An ⊂ Lb(Hn) as in 2.17. Let x = (x1, . . . , xn) ∈ Hn. Observe
An is a unital ∗-closed algebra in Lb(Hn). By 2.17 the operator Tn is in (A ′′)n ⊂ (An)′′. Now,
using 2.16, there exists a sequence {Snm} in An such that Snmx→ Tnx. This implies Smxi → Txi
for i = 1, . . . , n. Taking m large enough, we see Sm is in U by the above identity. It follows
A ∩U 6= ∅ for all strongly open neighborhoods U of T . So T is contained in the strong operator
topology closure of A and therefore there exists a net {Sα}α in A strongly convergent to T .

2.5 Q5: the von Neumann Bicommutant Theorem

We are now able to prove the von Neumann Bicommutant Theorem, concerning operator alge-
bras that are equal to their own bicommutant.

2.19 Theorem (von Neumann Bicommutant Theorem). Let H be a Hilbert space and A ⊂
Lb(H) be a subset closed under taking the adjoint. We have A ′′ = A if and only if A is a
strongly closed algebra containing the identity operator I.

Proof. Suppose A = A ′′. By 2.4 A is a unital strongly closed algebra. Conversely, suppose
A is a strongly closed algebra containing the identity operator I. The inclusion A ⊂ A ′′ is
trivial. Conversely, by 2.18 every T ∈ A ′′ is in the strong closure of A . This yields the other
inclusion A ′′ ⊂ A . It follows that A equals A ′′.
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Combining the above result with 2.14, we obtain the following corollary.

2.20 Corollary. Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-invariant subset. Then A is
reflexive if and only if A is a unital strongly closed algebra.

The above theorem yields yet another description of the von Neumann bicommutant, as follows.

2.21 Corollary. Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset. Then A ′′ equals
the strong closure of the algebra alg(A ∪ {I}) generated by A ∪ {I}.

Proof. Define U to be the strong closure of the unital algebra D := alg(A ∪ {I}). We show
D is ∗-closed. Since I is self-adjoint, we obtain that A ∪ {I} is ∗-closed. The algebra D
consists of polynomials in elements of A ∪ {I}. The adjoint of a monomial T1 . . . Tn with
T1, . . . , Tn ∈ A ∪ {I} is T ∗n . . . T

∗
1 . This is again a monomial of elements T ∗1 , . . . , T

∗
n ∈ A ∪ {I}.

We conclude that D is also closed under taking adjoints.

Now, take T ∈ A ′′ ⊂ D ′′. By 2.18 T is in the strong closure U of D . This shows one in-
clusion. For the other inclusion, observe that A is contained in A ′′, I is an element of A ′′ and
by 2.4 A ′′ is an algebra. Therefore, alg(A ∪ {I}) is contained in A ′′. Furthermore, we know by
2.4 that A ′′ is strongly closed. We conclude that U is contained in A ′′. This shows the other
inclusion.

If A is a ∗-invariant subset of Lb(H), then by 2.3 the commutant A ′ is a full algebra. Therefore,
the set of unitaries U(A ′) in A ′ forms a group. A consequence of the von Neumann Bicommutant
Theorem 2.19 is that every von Neumann algebra arises as the commutant of a unitary group.

2.22 Theorem. Let H be a Hilbert space and A ⊂ Lb(H) be a ∗-closed subset. Then A ′′ equals
U(A ′)′. Moreover, A is a unital strongly closed ∗-invariant algebra if and only if A is the
commutant of some group of unitaries.

Proof. Since U(A ′) is contained in A ′, the bicommutant A ′′ is a subset of U(A ′)′. Conversely,
let T ∈ U(A ′)′ and S ∈ A ′. Since A ′ is a unital sub-C∗-algebra of Lb(H) by 2.3, S is a linear
combination of unitaries from A ′. Therefore, T commutes with S. So T is an element of A ′′.
This yields the other inclusion U (A ′)′ ⊂ A ′′.

For the second claim, suppose A is a unital strongly closed ∗-invariant algebra. It follows
A = A ′′ = U(A ′)′ by 2.19. This shows A is the commutant of the unitary group U(A ′).
Conversely, suppose A = G′ is the commutant of a group G of unitaries on H. Since G is closed
under taking adjoints, 2.3 yields A = G′ is a unital strongly closed ∗-invariant algebra.
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3 Preliminaries about Riesz spaces

Here we present a short overview of the theory of ordered vector spaces and Riesz spaces in
particular. This is not meant as a complete discussion about the subject, but should be seen as
a treatment of the necessary concepts of the theory to understand the proofs in this thesis. A
more comprehensive treatment can be found in [ZA]. In this thesis we assume from now on all
vector spaces are real.

3.1 Riesz spaces

3.1 Definition. A vector space E equipped with a partial ordering ≥ is said to be an ordered
vector space if the following properties hold for all x, y ∈ E

i. x ≥ y implies x+ z ≥ y + z for all z ∈ E.

ii. x ≥ y implies αx ≥ αy for all α ∈ R≥0.

The two properties in the previous definition link the order structure to the algebraic operations
on the vector space. Naturally, we write x ≤ y as an alternative notation for y ≥ x. Furthermore,
we adopt the interval notation and denote [x, y] = {z ∈ E : x ≤ z ≤ y}. We have the following
notions of boundedness.

3.2 Definition. A subset A of an ordered vector space E is bounded above if there exists some
x ∈ E with y ≤ x for all y ∈ A. Similarly, A is bounded below if there exists some x ∈ E
satisfying y ≥ x for all y ∈ A. Finally, A is bounded if there exists x, y ∈ E such that A is
contained in the interval [x, y].

3.3 Definition. An element x in an ordered vector space E is called positive if x ≥ 0. The
positive cone E+ denotes the set of all positive elements in E.

By knowing which elements are positive one can obtain the ordering on an ordered vector space
E. Indeed, x ≥ y holds if and only if x− y is positive by the first property stated in Definition
3.1. When the order structure on an ordered vector space ensures the existence of suprema and
infima of finite subsets we are dealing with Riesz spaces.

3.4 Definition. A Riesz space is an ordered vector space E such that for each pair x, y ∈ E
the supremum and infimum of the set {x, y} exists. We denote

x ∨ y := sup{x, y}, x ∧ y := inf{x, y}.

Even stronger is the concept of Dedekind completeness, which is the generalization of the well-
known supremum property of the real numbers.

3.5 Definition. A Riesz space is Dedekind complete whenever every non-empty bounded above
subset has a supremum.

Obviously, requiring that every non-empty bounded below subset has an infimum, is equivalent
with Dedekind completeness. The utility of Dedekind completeness will become clear later,
when considering operators between Riesz spaces. An important class of Dedekind complete
Riesz spaces are the Lp-spaces. We introduce some of the main examples.
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3.6 Example. Let c0 be the space of all real-valued sequences converging to 0. Under the
ordering x ≤ y if xi ≤ yi for all i ∈ N, the space c0 becomes an ordered vector space. Observe c0
is a Riesz space. Indeed, its lattice operations satisfy x∨y = {xi∨yi}i∈N and x∧y = {xi∧yi}i∈N.
One verifies easily that every bounded above subset A ⊂ c0 has a supremum x ∈ c0 defined by
xi = supy∈A yi. It follows c0 is a Dedekind complete Riesz space. �

3.7 Example. Let X be a non-empty set and E a Dedekind complete Riesz space (for example
one could take E = R). The space EX of functions f : X → E is an ordered vector space
under the ordering f ≥ g if f(x) ≥ g(x) in E for all x ∈ X. Given f, g ∈ EX one checks the
supremum f ∨ g of {f, g} is given by (f ∨ g)(x) = f(x)∨ g(x) and the infimum f ∧ g is given by
(f ∧ g)(x) = f(x)∧ g(x). This shows EX is a Riesz space. Moreover, let A ⊂ EX be non-empty
and bounded above by some function g ∈ EX . All f ∈ A satisfy f(x) ≤ g(x) for x ∈ X. Since
E is Dedekind complete and {f(x) : f ∈ A} ⊂ E is bounded above by g(x) for all x ∈ X, the
function h ∈ EX given by h(x) = supf∈A f(x) is well-defined and satisfies h = supA. It follows

EX is also Dedekind complete. �

3.8 Example. Let c be the space of all convergent real-valued sequences. Under the ordering
x ≤ y if xi ≤ yi for all i ∈ N, the space c becomes an ordered vector space. Observe c is a
Riesz space. Indeed, its lattice operations satisfy x ∨ y = {xi ∨ yi}i∈N and x ∧ y = {xi ∧ yi}i∈N.
However, c is not Dedekind complete. To see this, let en ∈ c be the positive sequence whose
n-th component is one and every other is zero. Indeed, the set

A = {
n∑
i=1

(−1)iei : n ∈ N} ⊂ c,

bounded above by the constant sequence whose coordinates are one, has no supremum in c. �

3.9 Example. Let C∞(R) the space of differentiable functions f : R → R with the ordering
f ≥ g if f(x) ≥ g(x) for all x ∈ R. Let f, g ∈ C∞(R) be given by f(x) = x and g(x) = −x.
Observe that {f, g} has no supremum in C∞(R). Therefore, C∞(R) is an ordered vector space,
but not a Riesz space. �

Since we are able to take the supremum of two elements in a Riesz space, one can obtain a
decomposition in a positive and negative part. This allows us also to define an absolute value.
With these notions we retrieve lattice identities that are well-known for the real numbers.

3.10 Definition. Let x be an element of a Riesz space E. Define

x+ := x ∨ 0, x− := (−x) ∨ 0, |x| := x ∨ (−x).

x+ is called the positive part, x− the negative part and |x| the absolute value of x.

3.11 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. All f ∈ EX
satisfy |f |(x) = |f(x)| for all x ∈ X. �

3.12 Proposition. Let x be an element of a Riesz space E, then we have

i. x = x+ − x−;

ii. |x| = x+ + x−;

iii. x+ ∧ x− = 0;

iv. |x| = 0 if and only if x = 0;

v. |λx| = |λ||x| for λ ∈ R.
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Moreover, for x, y ∈ E we have

vi. x ∨ y = 1
2(x+ y + |x− y|);

vii. x ∧ y = 1
2(x+ y − |x− y|).

Proof. [AL, Theorems 1.5 and 1.7] and [ZA, Theorems 11.4 and 11.7]

Furthermore, we retrieve the triangle inequality, which will be used extensively in estimations.

3.13 Proposition. For elements x and y in a Riesz space, we have

|x+ y| ≤ |x|+ |y|.

Proof. [AL, Theorem 1.9]

Often, when considering mathematical objects, one is interested in structure preserving maps.
For Riesz spaces we have the notion of Riesz homomorphisms.

3.14 Definition. Let E and F Riesz spaces. A linear map T : E → F is a Riesz homomorphism
if

T (x ∨ y) = Tx ∨ Ty

holds for all x, y ∈ E.

The fact that T respects the lattice operation ∨ implies that T respects all other lattices oper-
ations.

3.15 Proposition. Let E and F be Riesz spaces and T : E → F a Riesz homomorphism. For
all x, y ∈ E we have

T (x ∧ y) = Tx ∧ Ty, |Tx| = T |x|, T (x+) = T (x)+, T (x−) = T (x)−.

Proof. [AL, Theorem 2.14]

3.16 Definition. Let E and F Riesz spaces. A map T : E → F is a Riesz isomorphism, if
T is a bijective Riesz homomorphism. If such a map T exists the spaces E and F are order
isomorphic. Finally, if E equals F , we call T a Riesz automorphism.

It is straightforward to check, that if T : E → F is a Riesz isomorphism, then T−1 : F → E is
also a Riesz isomorphism. Therefore, the above definition is symmetric.

3.17 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. The
linear maps Th : EX → EX defined by Thf = f ◦ h with h : X → X a function are Riesz
homomorphisms. If h is a bijection, then the map Th is a Riesz automorphism with inverse
T−1h = Th−1 . �
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3.2 Order convergence

For Riesz spaces there is a natural concept of convergence induced by the order structure.

3.18 Definition. A net {xα}α in a Riesz space E is decreasing to an element x ∈ E if α � β
implies that xα ≤ xβ and infα xα = x both hold. We write xα ↓ x. Similarly, {xα}α is increasing,
if α � β implies that xα ≥ xβ and supβ xβ = x both hold. We write xα ↑ x.

One observes immediately that xα ↑ x implies x − xα ↓ 0. Using the notions of increasing and
decreasing nets, we can define the concept of order convergence.

3.19 Definition. A net {xα}α in a Riesz space is order convergent to x ∈ E, if there exists a
net {yα}α with the same index set satisfying yα ↓ 0 and |xα − x| ≤ yα for all α. The element
x ∈ E is called the order limit of {xα}α. We write xα

o−→ x. A subset A ⊂ E is order closed,
if order convergence of a net {xα}α in A to x implies x ∈ A. Finally, a subset A ⊂ E is σ-order
closed, if order convergence of a sequence {xn}n in A to x implies x ∈ A.

3.20 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. A net
{fα}α in EX converges in order to an element f ∈ EX if and only if fα(x)

o−→ f(x) for each
x ∈ X. �

Clearly order limits, when they exists, are unique. Further, observe that a net converges in
order to x, if the net decreases or increases to x. We remark that order convergence can be
identified with convergence of nets in a certain topology: the order topology. Since we only
need the notion of order convergence, we will not go into detail about the order topology. The
interested reader is referred to [ZA].

The following propositions shows that order convergence is compatible with the lattice structure.

3.21 Proposition. For two nets {xα}α and {yβ}β in a Riesz space, satisfying xα
o−→ x and

yβ
o−→ y, we have

i. λxα + µyβ
o−→α,β λx+ µy for all λ, µ ∈ R;

ii. |xα|
o−→ |x|;

iii. xα ∨ yβ
o−→α,β x ∨ y;

iv. xα ∧ yβ
o−→α,β x ∧ y.

Proof. [AB, Theorem 1.6]

For the real numbers the Archimedean property states that for x ∈ R6=0 the sequence {nx}n∈N
is unbounded in R. For Riesz spaces we also have such a notion.

3.22 Definition. A Riesz space E is called Archimedean, if for each x ∈ E+ the sequence
{ 1nx}n∈N decreases to 0.

3.23 Example. Consider R2 endowed with the lexicographical ordering. That is (x1, y1) ≤
(x2, y2) if either x1 < x2 or else x1 = x2 and y1 ≤ y2. With this ordering R2 is a Riesz space.
For each n ∈ N we have (0, 1) ≤ 1

n(1, 0). Therefore, R2 is not Archimedean. �
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Most spaces we deal with, such as the function spaces and the Lp-spaces, are Archimedean. If
a Riesz space is Dedekind complete, we are ensured that it is Archimedean.

3.24 Proposition. If a Riesz space E is Dedekind complete, then it is Archimedean.

Proof. [AO, Lemma 8.4]

3.25 Example. Consider the space c of convergent sequences from Example 3.8, which is not
Dedekind complete. For x ∈ c+ we have 1

nxi ↓ 0 if n → ∞. This implies 1
nx ↓ 0 in c. So c is

Archimedean, but not Dedekind complete. �

The definition of Archimedean is independent of choice of the decreasing sequence.

3.26 Proposition. A Riesz space E is Archimedean if and only if the sequence {εnx}n decreases
to 0 for each x ∈ E+ and every sequence {εn}n of real numbers satisfying εn ↓ 0.

Proof. [ZA, Theorem 22.2]

When proving Schur’s Lemma for Riesz spaces, we need a corollary of the above result, which
is not a standard result present in the literature. Therefore, we provide a proof.

3.27 Corollary. Let E be an Archimedean Riesz space and x ∈ E. The linear span of x is
σ-order closed.

Proof. If x = 0 the claim is trivial. Therefore, we assume x 6= 0. Suppose y ∈ E is the
order limit of some sequence {λnx}n with λn ∈ R in the linear span of x. By 3.21 we have
|λnx−λmx|

o−→m,n |y− y| = 0. Now suppose {λn}n is not a Cauchy sequence in R. Then there
exists ε > 0 and a subsequence {λnk}k such that |λnk − λnl | ≥ ε for all k, l ∈ N. Combining the
previous two lines, we obtain

0 ≤ ε|x| ≤ |λnk − λnl ||x| = |λnkx− λnlx|
o−→k,l 0

with the aid of 3.12. This implies ε|x| = 0. A contradiction with the fact that x 6= 0 using 3.12.
So {λn}n is a Cauchy sequence and hence convergent to some λ ∈ R. By 3.12, 3.13, 3.21 and
3.26 it holds

0 ≤ |λx− y| ≤ |λn − λ||x|+ |λnx− y|
o−→ 0

and therefore y equals λx.

3.3 Orthogonality in Riesz spaces

Using the absolute value we can introduce an orthogonality concept, which will be of critical
importance in obtaining results for the order bicommutant.
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3.28 Definition. Two elements x and y in a Riesz space E are orthogonal if

|x| ∧ |y| = 0.

We write x ⊥ y. Furthermore, if A ⊂ E is non-empty, the set

A⊥ = {x ∈ E : x ⊥ y for all y ∈ A}

is called the orthogonal complement of A.2

3.29 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. Then we
have f ⊥ g if and only if f(x) ⊥ g(x) for all x ∈ X.

Now taking E = R, we derive f ⊥ g if and only if f and g have disjoint support. If A ⊂ RX is
a subset and Y = {x ∈ X : f(x) = 0 for all f ∈ A}, then

A⊥ = {g ∈ RX : g(x) = 0 for all x ∈ X \ Y }

is the orthogonal complement of A. �

For positive elements the sum is always larger or equal to the maximum. When the involved
elements are orthogonal, they coincide.

3.30 Proposition. For positive orthogonal elements x, y of a Riesz space we have

x+ y = x ∨ y.

Proof. This follows directly from the last two identities of 3.12, see [ZA, Theorem 14.4].

Every positive element in an Archimedean Riesz space can be approached from below by a
maximal orthogonal system.

3.31 Definition. Let E be a Riesz space. A subset S ⊂ E+ is an orthogonal system, if 0 /∈ S
and u ⊥ v for all u, v ∈ S with u 6= v.

Using Zorn’s Lemma one derives that every Riesz space has a maximal orthogonal system. We
state our approximation result.

3.32 Proposition. Let E be an Archimedean Riesz space and S ⊂ E+ a maximal orthogonal
system. Let x ∈ E be positive and define

xn,H =
∑
u∈H

x ∧ nu

for n ∈ N and H ⊂ S finite. We have xn,H ↑n,H x.

Proof. [SC, Proposition II.1.9]

2Some authors call two orthogonal elements ‘disjoint’ and talk about the ‘disjoint complement’ instead of the
‘orthogonal complement’. In order to stress the resemblance with the orthogonality concept on Hilbert spaces we
decided to use ‘orthogonal’.
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3.4 Riesz subspaces, ideals and bands

3.33 Definition. A linear subspace A contained in a Riesz space E is a Riesz subspace, if A is
closed under the lattice operations. That is x ∨ y, x ∧ y ∈ A for all x, y ∈ A.

Riesz subspaces are the natural subsets, closed under the lattice operations, to consider. How-
ever, to obtain a rich theory, which has a good interplay with the orthogonality concept, it turns
out that one needs ideals and bands.

3.34 Definition. A linear subspace A contained in a Riesz space E is an ideal, if |x| ≤ |y| and
y ∈ A implies x ∈ A. An order closed ideal is said to be a band.

3.35 Example. Consider the Dedekind complete Riesz space EX from Example 3.7 with E = R
and X an infinite set. For an element f ∈ RX we have |f |(x) = |f(x)| for x ∈ X. So, if f, g ∈ RX
satisfy |f | ≤ |g|, then |f(x)| ≤ |g(x)| holds for each x ∈ X. Now, let p ∈ [1,∞) and consider the
subspace

`p(X) = {f ∈ RX :
∑
x∈X
|f(x)|p exists and is finite}

of RX of p-summable functions. Note that the existence of
∑

x∈X |f(x)|p for f ∈ RX a priori
requires that the set {x ∈ X : f(x) 6= 0} is countable. The space `p(X) is a Dedekind complete
Riesz space. We show `p(X) is an ideal in RX , but not a band.

Let g ∈ `p(X) and f ∈ RX such that |f | ≤ |g|. This immediately implies f is p-summable
with

∑
x∈X |f(x)|p ≤

∑
x∈X |g(x)|p < ∞. It follows f ∈ `p(X) and therefore `p(X) is an ideal

of RX . On the other hand, for each finite subset J ⊂ X the element fJ , given by fJ(x) = 1 if
x ∈ J and fJ(x) = 0 for x ∈ X \J , is an element of `p(X). Let g ∈ RX be the constant function
one. Clearly g is not in `p(X). However, {fJ}J increases to g in RX . This shows `p(X) is not a
band in RX . �

One can give a complete description of the bands in the space EX .

3.36 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. Let
A ⊂ EX be a band. Fix x ∈ X. We show the set Bx = {f(x) : f ∈ A} is a band in E. Define for
z ∈ X and w ∈ E the function gz,w ∈ EX by gz,w(u) = 0 for u 6= z and gz,w(z) = w. Suppose
|y| ≤ |f(x)| = |f |(x) holds for some y ∈ E and f ∈ A. We have |gx,y| ≤ |f | and therefore gx,y is
in A. We conclude gx,y(x) = y ∈ Bx. Hence Bx is an ideal.

Furthermore, suppose fα(x)
o−→ y holds for some y ∈ E and a net {fα}α in A. Define

yα := fα(x). We have gx,yα
o−→ gx,y by Example 3.20, since this convergence holds point-

wise. Moreover, we have |gx,yα | ≤ |fα| and therefore gx,yα ∈ A for every α. Since A is a band,
gx,y is an element of A and therefore gx,y(x) = y is an element of Bx. We conclude that Bx is
band.

Hence for each x ∈ X there exists bands Bx ⊂ E such that

A = {f ∈ EX : f(x) ∈ Bx for all x ∈ X}.
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Conversely, it is a routine check that, if Bx is a band in E for each x ∈ X, then A = {f ∈ EX :
f(x) ∈ Bx for all x ∈ X} is a band. So all bands are of the above form. Moreover, we have
f ⊥ g if and only if f(x) ⊥ g(x) for all x ∈ X by 3.29. Therefore, it is a straightforward check
that

A⊥ = {f ∈ EX : f(x) ∈ B⊥x for all x ∈ X}.

Finally, note in R there are only two bands: {0} and R. It follows every band in RX is of the
form BY = {g ∈ RX : g(x) = 0 for all x ∈ Y } for some Y ⊂ R. It is a similar check that also in
`p(X) ⊂ RX (see Example 3.35) all bands are of the form BY for some Y ⊂ R. �

Note that ideals (and therefore bands) are closed under the lattice operations ∨ and ∧. So ideals
are Riesz subspaces. Moreover, an intersection of ideals is again an ideal. The same holds for
bands. In this thesis we often consider ideals and bands generated by a certain subset S of a
Riesz space.

3.37 Definition. Let E be a Riesz space and A ⊂ E. The ideal E(A) generated by A is the
smallest ideal with respect to the inclusion that contains A. Similarly, the band B(A) generated
by A is the smallest band with respect to the inclusion that contains A. If A consists of one
element x ∈ E, we write E(x) and B(x) for the ideal respectively the band generated by A.

3.38 Example. Consider the Dedekind complete Riesz space EX from Example 3.7 with E = R.
Let f ∈ RX . Let Y = {x ∈ X : f(x) = 0}. The band B(f) generated by f is given by
BY = {g ∈ RX : g(x) = 0 for all x ∈ Y }. �

A moment’s thought reveals E(A) is the intersection of all ideals containing A. Similarly, B(A)
is the intersection of all bands containing A. Furthermore, we have B(A) = B(E(A)). There are
however more convenient descriptions of E(A) and B(A) in terms of A.

3.39 Proposition. Let E be a Riesz space and A ⊂ E. The ideal generated by A is given by

E(A) = {x ∈ E : there exists x1, . . . , xn ∈ A and λ ∈ R≥0 with |x| ≤ λ
n∑
i=1

|xi|}.

Moreover, if A is an ideal in E, the band generated by A is given by

B(A) = {x ∈ E : there exists a net {xα}α in A with 0 ≤ xα ↑ |x|}.

Proof. [AL, Theorem 1.38]

For a non-empty subset A contained in a Riesz space E, A⊥ is always a band. Moreover, this
gives yet another important description of a band generated by a set.

3.40 Proposition. Let E be an Archimedean Riesz space and A ⊂ E. The band B(A) generated
by A is precisely A⊥⊥ := (A⊥)⊥.

Proof. [AL, Theorem 1.39]

Proposition 3.40 gives rise to an important decomposition of a Riesz space.

3.41 Proposition. If B is a band in a Dedekind complete Riesz space E, then E = B ⊕ B⊥
holds. Moreover, for a non-empty subset A of E we have E = A⊥ ⊕A⊥⊥.
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Proof. [AL, Theorem 1.42]

3.42 Example. Consider the Dedekind complete Riesz space EX from Example 3.7 with E = R.
Let χY ∈ RX be the characteristic function of a subset Y ⊂ X. All bands in RX are of the form
BY for some Y ⊂ X following Example 3.36. Fix Y ⊂ X. Observe we have χX\Y f ∈ BY and

χY f ∈ BX\Y = B⊥Y for f ∈ E. Therefore, each function f ∈ RX can be uniquely decomposed

as f = χX\Y f + χY f with χX\Y f ∈ BY and χY f ∈ B⊥Y . �

Finally, we make the following definition for later purposes.

3.43 Definition. A subset G of a Riesz space E is called absolutely self-majorizing if for each
x ∈ G there exists y ∈ G such that |x| ≤ y.

Subsets G that are closed under taking the absolute value are absolutely self-majorizing. Hence
in particular, Riesz subspaces, bands and ideals are absolutely self-majorizing.
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4 Operators on Riesz spaces

In this section we treat the operator theory needed in this thesis. We start with some basic
material, which is present in most of the literature on the subject. From paragraph 4.2 onward
we will focus on operator algebras on Riesz spaces, a subject which is hardly treated in literature
at the moment.

4.1 Basic operator theory for Riesz spaces

Here we treat some of the basics about operator theory. These results are well-known and a
more thorough discussion can be found in [AL]. Let E and F be vector spaces. With L(E,F )
we denote the vector space of operators from E to F . With L(E) we denote the vector space of
operators on E. If E is a Riesz space, then an operator T : E → F is determined by its action
on E+, because for all x ∈ E we have Tx = Tx+ − Tx− by 3.12. When E and F are ordered
vector spaces, it is possible to define an ordering on L(E,F ).

4.1 Definition. Let E and F be ordered vector spaces. An operator T : E → F is positive, if
Tx ≥ 0 holds for all x ∈ E+.

4.2 Example. Let E and F Riesz spaces and T : E → F a Riesz homomorphism. For x ∈ E+

we have Tx = T [x+] = [Tx]+ ≥ 0 by 3.15. Therefore, Riesz homomorphisms are positive
operators.

4.3 Proposition. Let E and F be ordered vector spaces. For S, T ∈ L(E,F ) define S ≤ T if
T − S is positive. With this partial ordering L(E,F ) is an ordered vector space.

For general Riesz spaces E and F the space L(E,F ) need not be a Riesz space. To achieve a
Riesz space we consider the subspace of order bounded operators and take F Dedekind complete.

4.4 Definition. Let E and F be Riesz spaces. An operator T : E → F is order bounded, if it
maps bounded subsets of E to bounded subsets of F . The vector space of all order bounded
operators from E to F is denoted by Lb(E,F ).

For positive operators T between Riesz spaces E and F , we have T [x, y] ⊂ [Tx, Ty] for x, y ∈ E
with x ≤ y. Thus, every positive operator T is order bounded. In 4.8 we consider an example
of an operator that is not order bounded. We are now able to describe the Riesz space Lb(E,F )
of order bounded operators.

4.5 Theorem. Let E and F be Riesz spaces with F Dedekind complete. Then Lb(E,F ) is a
Dedekind complete Riesz space. Moreover, its lattice operations satisfy for all S, T ∈ Lb(E,F )
and x ∈ E+:

|T |x = sup{|Ty| : |y| ≤ x};
(S ∨ T )x = sup{Sy + Tz : y, z ∈ E+ and y + z = x};
(S ∧ T )x = inf{Sy + Tz : y, z ∈ E+ and y + z = x}.

Proof. [AL, Theorem 1.18]
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In Example 4.8 we show L(E,F ) need not be a Riesz space for F Dedekind complete and in
Example 4.7 we show Lb(E,F ) need not be a Riesz space, if F is not Dedekind complete. This
justifies our assumptions in Theorem 4.5. The following inequality is of great importance in
approximations involving operators.

4.6 Proposition. Let E and F be Riesz spaces. For an operator T : E → F for which |T |
exists one has

|Tx| ≤ |T ||x|

for all x ∈ E.

Proof. By definition we have ±T ≤ |T |. Let x ∈ X, we obtain by 3.12

±Tx = ±Tx+ ∓ Tx− ≤ |T |x+ + |T |x− = |T ||x|.

We conclude |Tx| ≤ |T ||x|.

Using this estimation result we are now able to give two counterexamples justifying the assump-
tion of order boundedness and Dedekind completeness in 4.5.

4.7 Example. This example is based on [AL, Example 1.17]. Let c be the Riesz space of
convergent sequences from Example 3.8. We show Lb(c) is not a Riesz space. Consider the
positive operators S, T : c→ c defined by

Sx = (x2, x1, x4, x3, . . .), Tx = (x1, x1, x3, x3, . . .).

Take R = S − T , then R is order bounded as difference of two positive operators. We show |R|
does not exist. For n ∈ N define the positive operator Pn : c→ c by

Pnx = (x1, . . . , xn−1, 0, xn+1, . . .).

Observe that every sequence in the range of R ∈ Lb(c) has its even coordinates zero. Therefore,
P2nR = R holds for each n ∈ N. For positive x ∈ c we have ±Rx ≤ |R|x by definition.
Combining the last two lines we derive

±Rx = ±P2nRx ≤ P2n|R|x ≤ |R|x,

using P2n is a positive operator satisfying P2ny ≤ y for each y ∈ c+. We conclude ±R ≤
P2n|R| ≤ |R| and thus |R| = P2n|R| holds for each n ∈ N. We infer each sequence in the range
of |R| has its even coordinates zero.

For n ∈ N, let en ∈ c be the sequence whose n-th coordinate is one and every other zero.
Then the n-th coordinate from −Ren is one. Consider the constant sequence e ∈ c with ones
on all entries. We have en ≤ e. From the inequalities −Ren ≤ |R|en ≤ |R|e for each n ∈ N, we
derive that the odd coordinates of |R|e are greater or equal to one. Hence, it is impossible for
|R|e to converge, noting all even coordinates are zero. We derive |R| can not exist. So Lb(c) is
not a Riesz space. This has to do with the fact that c is not Dedekind complete. �

4.8 Example. This example is based on [AL, Example 4.73]. Let C[0, 1] the space of continu-
ous functions f : [0, 1] → R with the ordering f ≥ g if f(x) ≥ g(x) for all x ∈ [0, 1]. Since the
functions x 7→ f(x) ∧ g(x) and x 7→ f(x) ∨ g(x) are continuous for f, g ∈ E, it follows that E is
a Riesz space.

24



Consider also the Dedekind complete Riesz space c0 from Example 3.6. Define the operator
T : C[0, 1]→ c0 by

Tf = {f(1/i)− f(0)}i∈N.

The codomain of T is well-defined, because limi→∞ f(1/i) = f(0) holds by continuity of f . We
show T is not order bounded. Assume by way of contradiction that T is order bounded. Let
1 ∈ C[0, 1] be the constant function one. The interval [0,1] is bounded, hence there exists
u ∈ c0 such that |Tf | ≤ u for f ∈ [0,1]. For each n ∈ N choose continuous functions fn in [0,1]
with fn(0) = 0 and fn(x) = 1 for x ∈ [1/n, 1]. We have |Tfi|i = |fi(1/i) − fi(0)| = 1 ≤ ui for
each i ∈ N. A contradiction with the fact that u converges to 0. It follows T is not order bounded.

Now suppose |T | exists, then for all f ∈ [0,1] the inequalities |Tf | ≤ |T |f ≤ |T |1 hold by
4.6. Therefore, {Tf : f ∈ [0,1]} is bounded, which is in contradiction with what we showed
before. It follows |T | does not exists. Therefore, L(C[0, 1], c0) is not a Riesz space, even despite
the fact that c0 is Dedekind complete. �

We shift our scope to order convergence in the Riesz space Lb(E,F ). The following example
shows that pointwise order convergence of operators does not imply order convergence of the
operators itself.

4.9 Example. Consider the Dedekind complete Riesz space c0 from Example 3.6. For each
n ∈ N consider the sequence of order bounded positive functionals φn : c0 → R given by
φn(x) = xn. For x ∈ c0 we have by definition φn(x) = xn → 0 if n → ∞. Now suppose
φn

o−→ 0 holds in Lb(c0,R). By definition there exists a sequence {ψn}n in Lb(c0,R) such that
φn ≤ ψn ↓ 0 if n → ∞. This implies ψ1 ≥ φn for all n ∈ N and thus {φn : n ∈ N} is bounded
above by ψ1. We show {φn : n ∈ N} is not bounded above in Lb(c0,R) and therefore {φn}n does
not converge in order to 0.

Arguing by contradiction, suppose {φn : n ∈ N} is bounded above by some ψ ∈ Lb(c0,R).
Let en ∈ c0 be the positive sequence whose n-th component is one and every other is zero. So

ψ(en) ≥ φn(en) = 1 holds for all n ∈ N. Finally, define xn =
∑n3

i=1 en ∈ c0, then we have
ψ(xn) ≥ n3. With the supremum norm ‖x‖ = supi∈N xi, the space c0 is a Banach space. Since
‖xn‖ = 1 holds, x =

∑∞
i=1

xn
n2 exists in c0. Since all the xn are positive, we have 0 ≤ xn

n2 ≤ x
and thus ψ(x) ≥ ψ(xn

n2 ) ≥ n for all n ∈ N. Therefore such a ψ does not exist. We have derived
a contradiction and shown that {φn : n ∈ N} is not bounded above in Lb(c0,R). �

However, when a net of operators decreases pointwise to an operator T , we know the net
decreases to T in Lb(E,F ).

4.10 Proposition. Let E and F be Riesz spaces with F Dedekind complete. A net {Tα}α
in Lb(E,F ) decreases to an operator T ∈ Lb(E,F ) if and only if Tαx ↓ Tx for all x ∈ E+.
Similarly, {Tα}α increases to T if and only if Tαx ↑ Tx for all x ∈ E+.

Proof. [AL, Theorem 1.18]

Naturally, one considers operators that preserve convergence properties. Therefore, we make
the following definition.

4.11 Definition. Let E and F be Riesz spaces. An operator T : E → F is order continuous
if order convergence of a net {xα}α in E to x implies Txα

o−→ Tx. The vector space of order
continuous operators from E to F will be denoted by Ln(E,F ).
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4.12 Proposition. If T : E → F is a positive operator between Riesz spaces E and F , then T
is order continuous if and only if xα ↑ x in E implies Txα ↑ Tx in F . Similarly, T is order
continuous if and only if xα ↓ x in E, implies Txα ↓ Tx in F .

Proof. See the remark in the text below [AB, Definition 3.6].

4.13 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. For a
function h : X → X consider the operator Th : EX → EX , Thg = g ◦ h as in Example 3.17.
Suppose {fα}α is a net in EX converging in order to f . Then fα(x)→ f(x) holds for all x ∈ X
by 3.20. We have

(Thfα)(x) = fα(h(x))→ f(h(x)) = (Thf)(x)

for all x ∈ X. Therefore, Thfα converges in order to Thf . It follows T is order continuous. �

4.14 Proposition. Let E and F be Riesz spaces. Every order continuous operator T : E → F
is order bounded. If F is Dedekind complete, then Ln(E,F ) is a band in Lb(E,F ).

Proof. [AL, Lemma 1.54 and Theorem 1.57]

The facts that a band is order closed and that Lb(E,F ) is Dedekind complete, imply the following
corollary of 4.14.

4.15 Corollary. Let E and F be Riesz spaces and F Dedekind complete, then Ln(E,F ) is a
Dedekind complete Riesz space.

The inclusion of the order continuous operators in the order bounded operators can be proper.

4.16 Example. This example is based on [AL, Example 1.15]. Let L1[0, 1] be the ordered
vector space of Lesbesgue integrable functions f : [0, 1] → R with f ≥ g if f(x) ≥ g(x) for all
x ∈ [0, 1]. Since the functions x 7→ f(x) ∧ g(x) and x 7→ f(x) ∨ g(x) are Lesbesgue integrable
for f, g ∈ L1[0, 1], it follows that L1[0, 1] is a Riesz space. Consider the positive operator
T : L1[0, 1]→ R given by

Tf =

∫ 1

0
fdx.

Let F be the collection of all finite subsets of [0, 1] and consider the net {χα : α ∈ F}, where χα
is the characteristic function on α. Clearly the net satisfies χα ↑ 1. On the other hand, we have
T (χα) = 0 for all α ∈ F and T (1) = 1. This shows T is order bounded (since it is positive), but
not order continuous. �

4.2 Multiplying operators on Riesz spaces

From now on we will focus on the algebra L(E) and, in particular, its subalgebras Lb(E) and
Ln(E) for a Riesz space E.3 In this paragraph we investigate the compatibility between the
algebraic structure and the order structure on L(E). We begin with a basic but useful identity.

3Note that a product of order bounded or order continuous operators is again order bounded, respectively
order continuous.
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4.17 Proposition. Let E be a Riesz space and S, T,R and U operators on E. Suppose S ≤ T
and R ≤ U . If either S and U are positive or T and R are positive, we have SR ≤ TU .

Proof. In the case S and U are positive we have SRx ≤ SUx ≤ TUx for all x ∈ E+. In the
case T and R are positive we deduce SRx ≤ TRx ≤ TUx for all x ∈ E+. In both cases we
conclude SR ≤ TU .

The following proposition is of great importance in estimates involving operators.

4.18 Proposition. Let S, T ∈ Lb(E) with E Dedekind complete. We have

|TS| ≤ |T ||S|.

Proof. For positive operators S, T ∈ Lb(E) we clearly have TS ≥ 0 and hence |TS| = TS.
Furthermore, we may write T = T+ − T−, |T | = T+ + T−, S = S+ − S− and |S| = S+ + S− by
4.5. Now, by combining the previous observations with the triangle inequality 3.13, we have for
S, T ∈ Lb(E)

|TS| = |T+T− − T+S− − T−S+ + T−S−| ≤ T+T− + T+S− + T−S+ + T−S− = |T ||S|.

Finally, order convergence of operators is compatible with multiplication, when we consider a
Dedekind complete Riesz space.

4.19 Proposition. Let Tα ↓ T in Lb(E) with E Dedekind complete. For S ∈ Lb(E) positive
we have TαS ↓ TS. Furthermore, if S ∈ Ln(E) is positive, we also have STα ↓ ST . The same
results hold when ↓ is replaced by ↑.

Proof. Let S ∈ Lb(E) positive. For every x ∈ E+ we have TαSx ↓ TSx by 4.10. This implies
TαS ↓ TS by 4.10 again. Further, if S ∈ Ln(E) is positive, we have for x ∈ E+ that Tαx ↓ Tx
by 4.10. By 4.12 we derive STαx ↓ STx for all x ∈ E+, implying STα ↓ ST by 4.10 again.

4.20 Proposition. Let Tα
o−→ T in Lb(E) with E Dedekind complete. For S ∈ Lb(E) we have

TαS
o−→ TS. Furthermore, if S ∈ Ln(E), we even have STα

o−→ ST .

Proof. From Tα
o−→ T we know there exists some net {Rα}α such that |Tα − T | ≤ Rα ↓ 0.

Using 4.18, 4.17 and 4.19, respectively, we deduce

|TαS − TS| ≤ |Tα − T ||S| ≤ Rα|S| ↓ 0 for S ∈ Lb(E);

|STα − ST | ≤ |S||Tα − T | ≤ |S|Rα ↓ 0 for S ∈ Ln(E).

Hence it follows TαS
o−→ TS if S ∈ Lb(E) and STα

o−→ ST if S ∈ Ln(E).

The question wether multiplication is compatible with order convergence in both variables, is
more delicate. Boundedness of the involved nets plays a role. However, we will not study this
question here, since an eleborate discussion is not needed to obtain the main results of this thesis.
In the proof of Proposition 4.22 below one can find an example of the usage of boundedness to
deal with the multiplication of two order convergent nets.
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4.3 Algebras of operators

Our first goal, as formulated in the introduction, is to analyze the structure of the order bicom-
mutant. In paragraph 9.1 we shall see it is a band algebra4. For that reason we consider ideals
and bands generated by subalgebras of Lb(E) and Ln(E) for Dedekind complete Riesz spaces
E. To avoid confusion we stress that we do not consider algebraic ideals. All ideals mentioned
in this thesis are order ideals, as defined in 3.34.

4.21 Proposition. Let E be a Dedekind complete Riesz space and A ⊂ Lb(E) absolutely self-
majorizing and closed under multiplication. Then the ideal E(A ) generated by A is an algebra.

Proof. By 3.39 we have the following description

E(A ) = {T ∈ Lb(E) : ∃ A1, . . . , An ∈ A and λ > 0 with |T | ≤ λ
n∑
i=1

|Ai|}.

For each A ∈ A there exists an operator A′ ∈ A such that |A| ≤ A′, since A is absolutely
self-majorizing. Therefore, we can rewrite our expression for E(A ) in the following way

E(A ) = {T ∈ Lb(E) : ∃ A1, . . . , An ∈ A and λ > 0 with |T | ≤ λ
n∑
i=1

Ai}.

By definition E(A ) is a linear subspace of Lb(E). So we only have to show E(A ) is closed under
multiplication. Let S, T ∈ E(A ). Then there exist λ, µ > 0 and A1, . . . , An, B1, . . . , Bm ∈ A
such that |S| ≤ λ

∑n
i=1Ai and |T | ≤ µ

∑m
j=1Bj . Using 4.17 and 4.18 we deduce

|ST | ≤ |S||T | ≤ λµ
n∑
i=1

m∑
j=1

AiBj .

Clearly it holds λµ > 0 and AiBj ∈ A , since A is closed under multiplication. We conclude
ST ∈ E(A ), which was to be shown.

4.22 Proposition. Let E be a Dedekind complete Riesz space. If A ⊂ Ln(E) is an ideal and
an algebra, then the band B(A ) ⊂ Ln(E) generated by A is an algebra.

Proof. By 3.39 we have the following description

B(A ) = {T ∈ Ln(E) : ∃ {Tα}α ⊂ A + with 0 ≤ Tα ↑ |T |}.

By definition B(A ) is a linear subspace. So we only have to show B(A ) is closed under multi-
plication. Let S, T ∈ B(A ), then there exist nets {Sα}α, {Tβ}β in A + such that 0 ≤ Sα ↑ |S|
and 0 ≤ Tβ ↑ |T |. Clearly this yields |S| − Sα ↓ 0 and |T | − Tβ ↓ 0. Now observe by 4.18 and
the triangle inequality 3.13 we have

|SαTβ − |S||T || ≤ |Sα(Tβ − |T |)|+ |(Sα − |S|)|T || ≤ Sα(|T | − Tβ) + (|S| − Sα)|T | = (∗).

Now, using Propositions 4.17 and 4.19, we deduce

(∗) ≤ |S|(|T | − Tβ) + (|S| − Sα)|T | ↓α,β 0.

We conclude SαTβ
o−→α,β |S||T | with SαTβ ∈ A , since A is an algebra. So |S||T | is an element

of B(A ) using B(A ) is order closed. Now by 4.18 we have |ST | ≤ |S||T |. Using B(A ) is also
an ideal, we have ST ∈ B(A ). Therefore, B(A ) is an algebra.

4That is, a band and an algebra.

28



We already announced the order bicommutant is a band algebra. For later purposes we make
the following definition.

4.23 Definition. Let E a Riesz space and A ⊂ Lb(E) a subset. The band algebra bandalg(A )
generated by A is the smallest band algebra containing A with respect to the inclusion.

Since Lb(E) is a band algebra itself, the band algebra in Lb(E) generated by A always exists. A
moment’s thought reveals bandalg(A ) is the intersection of all band algebras in Lb(E) containing
A . Moreover, if we have A ⊂ Ln(E), then bandalg(A ) is contained in Ln(E), since Ln(E)
is a band algebra itself. Combining the above two proposition we come to our next generation
result.

4.24 Corollary. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) absolutely self-
majorizing and closed under multiplication, then the band B(A ) ⊂ Ln(E) generated by A is a
band algebra.

The above result combined with the following lemma suggests a nice characterization of bandalg(A ).

4.25 Lemma. Let E be a Dedekind complete Riesz space and A ⊂ Lb(E) absolutely self-
majorizing. Then alg(A ) is absolutely self-majorizing.

Proof. Let S ∈ alg(A ). There exists n ∈ N and mi ∈ N, λi ∈ R, i = 1, . . . , n such that

S =
n∑
i=1

λn

mi∏
j=1

Si,j

is a polynomial in elements Si,j ∈ A . Fix i and j. There exists Ti,j ∈ A such that |Si,j | ≤ Ti,j ,
since A is absolutely self-majorizing. By 3.13, 3.12, 4.18 respectively 4.17 we derive

|S| ≤
n∑
i=1

|λn|
mi∏
j=1

|Si,j | ≤
n∑
i=1

|λn|
mi∏
j=1

Ti,j ∈ alg(A ).

Therefore, alg(A ) is absolutely self-majorizing.

4.26 Proposition. Let E a be Dedekind complete Riesz space and A ⊂ Ln(E) absolutely self-
majorizing. We have

bandalg(A ) = B(alg(A )).

Proof. Since alg(A ) is multiplicatively closed and absolutely self-majorizing by Lemma 4.25,
the band B(alg(A )) is an algebra containing A by 4.24. Therefore, we obtain bandalg(A ) ⊂
B(alg(A )). Conversely, bandalg(A ) is a band containing alg(A ), therefore B(alg(A )) is con-
tained in bandalg(A ). Now our conclusion follows.

4.4 Invariant and reducing bands

Our second goal, as formulated in the introduction, is to retrieve a reflexivity result for the order
bicommutant. Therefore, we make the following analogue of Definition 2.6 concerning reducing
bands.
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4.27 Definition. Let E be a Riesz space and B ⊂ E a band. The band B reduces an operator
T on E, if TB ⊂ B and TB⊥ ⊂ B⊥ holds. In this case B is called T -reducing. Similarly, B
reduces A ⊂ L(E), if B reduces T for each T ∈ A . Then B is called A -reducing.

4.28 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. Let
#X ≥ 3 and E 6= {0}. Take h : X → X to be a transposition of elements x, y ∈ X,x 6= y. Let
the operator Th : EX → EX , Thf = f ◦ h as in 3.17. The band

B = {f ∈ EX : f(x) = 0 = f(y)}

is Th-reducing. Take g : X → X to be the constant map g(z) = x for all z ∈ X. The band B
is Tg-invariant, but does not reduce Tg. Finally, let w ∈ X with w 6= x, y and j : X → X the
transposition of the elements y and w. Clearly, Tj does not leave B invariant. �

Invariance under a subset A of operators implies immediately invariance under the whole band
generated by A .

4.29 Proposition. Let E be a Dedekind complete Riesz space, A ⊂ Lb(E) be a subset and
B ⊂ E be a band. The band B is A -invariant if and only if B is B(A )-invariant.

Proof. Since A ⊂ B(A ) it is clear B is A -invariant, if it is B(A )-invariant. So suppose B is
A -invariant. Take S ∈ A and x ∈ B. Define D = {|Sy| : |y| ≤ |x|}. Suppose y ∈ E satisfies
|y| ≤ |x|, then we have y ∈ B and therefore Sy is contained in B using B is A -invariant. This
implies |Sy| ∈ B and hence D is contained in B. By 4.5 we have |S||x| = supD. Hence |S||x|
is an element of B, since B is order closed.

Now let T ∈ E(A ). By 3.39 there exist λ > 0 and A1, . . . , An ∈ A such that |T | ≤ λ
∑n

i=1 |Ai|.
Let x ∈ B, we have by 4.6

|Tx| ≤ |T ||x| ≤ λ
n∑
i=1

|Ai||x|.

Since x is in B, we have |Ai||x| ∈ B by the previous. Hence we deduce λ
∑n

i=1 |Ai||x| ∈ B,
which implies Tx ∈ B. So B is invariant under T . It follows B is E(A )-invariant. Now suppose
T ∈ B(A ), then there exists a net {Tα}α in E(A ) such that 0 ≤ Tα ↑ |T | by 3.39. For x ∈ B
it yields Tα|x| ↑ |T ||x| by 4.10. Because B is invariant under Tα, we have Tα|x| ∈ B for each
α. Since B is order closed, it follows that |T ||x| ∈ B. Using the identity 4.6: |Tx| ≤ |T ||x|,
we conclude Tx ∈ B. So B is T -invariant for each T ∈ B(A ). We conclude that B is B(A )-
invariant.

4.30 Corollary. Let E be a Dedekind complete Riesz space, A ⊂ Lb(E) a subset and B ⊂ E
be a band. The band B is A -reducing if and only if B is B(A )-reducing.

4.31 Corollary. Let E a Dedekind complete Riesz space and B ⊂ E a band. The sets

AB = {T ∈ Lb(E) : TB ⊂ B}, ÃB = {T ∈ Lb(E) : B reduces T}

are band algebras.

Proof. The fact that AB is an algebra is obvious. We show AB is a band. The band B is AB-
invariant and hence B(AB)-invariant by 4.29. It follows B(AB) ⊂ AB. On the other hand AB

is trivially contained in B(AB). Therefore, AB = B(AB) is a band. Observing ÃB = AB ∩AB⊥

the other claim directly follows.
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Clearly, alg(A ) and A have the same invariant and reducing bands. Combined with the above
we infer the following summary of results.

4.32 Proposition. Let E be a Dedekind complete Riesz space and A ⊂ Lb(E) a subset. Then
every U ⊂ Lb(E) with A ⊂ U ⊂ B(A ) or A ⊂ U ⊂ alg(A ) has the same invariant and
reducing bands as A . If A ⊂ Ln(E) is absolutely self-majorizing, then every U ⊂ Ln(E) with
A ⊂ U ⊂ bandalg(A ) has the same invariant and reducing bands as A .

Proof. Combine 4.26, 4.29, 4.30.

In 2.8 we derived that for a ∗-closed subset of operators on a Hilbert space the invariant and
reducing subspaces agree. For Riesz spaces we have no natural counterpart of the adjoint.
However, the coincidence of the invariant and reducing subspaces plays an important role in the
techniques used for answering the questions concerning the von Neumann bicommutant. So we
make the following definition.

4.33 Definition. Let E be a Riesz space. A subset A of L(E) has the ∗-property if every
A -invariant band is A -reducing.

An important class of instances with the ∗-property are groups of Riesz automorphisms.

4.34 Proposition. Let E be a Riesz space and Aut(E) the group of Riesz automorphisms on
E. A subset A ⊂ Aut(E) closed under taking the inverse has the ∗-property.

Proof. Suppose A ⊂ Aut(E) is closed under taking the inverse. Let B ⊂ E be a band. Take
x ∈ B and y ∈ B⊥. The element T−1x is in B, since T−1 is in A . Hence we have |T−1x|∧|y| = 0.
Now applying T on both sides yields

0 = T [|T−1x| ∧ |y|] = |TT−1x| ∧ |Ty| = |x| ∧ |Ty|

using 3.15. Therefore, Ty ⊥ x holds for all x ∈ B. We conclude Ty ∈ B⊥ for all T ∈ A and
y ∈ B⊥. So B⊥ is also A -invariant and B reduces A . Therefore, A has the ∗-property.

From 4.32 we immediately deduce the following result.

4.35 Proposition. Let E be a Riesz space. If A ⊂ Lb(E) is a subset with the ∗-property, then
every U ⊂ Lb(E) with A ⊂ U ⊂ B(A ) or A ⊂ U ⊂ alg(A ) has the ∗-property. If A ⊂ Ln(E)
is moreover absolutely self-majorizing, then every U ⊂ Ln(E) with A ⊂ U ⊂ bandalg(A ) has
the ∗-property.

One can also consider the dual problem. What does invariance of a subset A ⊂ E under a set
of operators A imply about the invariance of the ideals and bands generated by A? When A
and A are positive, this question are easily answered.

4.36 Proposition. Let E be a Dedekind complete Riesz space, A ⊂ E+ and A ⊂ Lb(E)+

subsets. If A is A -invariant, then the ideal E(A) generated by A is A -invariant.
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Proof. Suppose A is A -invariant. Let x ∈ E(A). Then there exist s1, . . . , sn ∈ A and λ > 0
such that |x| ≤ λ

∑n
i=1 si. Hence we have by 4.6 for T ∈ A

|Tx| ≤ T |x| ≤ λ
n∑
i=1

Tsi

with Tsi ∈ A. The fact that E(A) is an ideal yields Tx ∈ E(A). It follows E(A) is T -invariant
for all T ∈ A and thus E(A) is A -invariant.

4.37 Proposition. Let E be a Dedekind complete Riesz space, A ⊂ E an ideal and A ⊂ Ln(E)
a subset. If A is A -invariant, then the band B(A) generated by A is A -invariant.

Proof. Suppose A is A -invariant. Let T ∈ A and x ∈ B(A). There exists a net {xα}α in A
such that xα

o−→ x. By order continuity we have Txα
o−→ Tx with Txα ∈ A by assumption.

Hence Tx ∈ B(A) holds using B(A) is order closed. We conclude that B(A) is T -invariant for
all T ∈ A . Therefore, B(A) is A -invariant.

4.38 Corollary. Let E be a Dedekind complete Riesz space, A ⊂ E+ and A ⊂ Ln(E)+ subsets.
If A is A -invariant, then the band B(A) generated by A is A -invariant.

When A is an ideal, we have a stronger statement. Before giving the proof, we need the following
lemma.

4.39 Lemma. Let E and F Riesz spaces with F Dedekind complete. For a positive operator
T : E → F and x ∈ E there exists S ∈ E(T ) ⊂ Lb(E,F ) such that T |x| = Sx.

Proof. [AL, Theorem 1.23]

4.40 Proposition. Let E be a Dedekind complete Riesz space and A ⊂ Lb(E). Let A be A -
invariant. If A is an ideal of Lb(E), then E(A) is A -invariant. Moreover, if A is an ideal of
Ln(E), then B(A) is A -invariant.

Proof. Suppose A is A -invariant. Let x ∈ E(A) and T ∈ A , then there exists a1, . . . , an ∈ A
and λ > 0 such that |x| ≤ λ

∑n
i=1 |ai|. Let i ∈ {1, . . . , n}, by 4.39 we have |T ||ai| = Siai for

some Si ∈ E(|T |) ⊂ A . So |T ||ai| = Siai is in A by assumption for each i ∈ {1, . . . , n}. Finally,

|Tx| ≤ |T ||x| ≤ λ
n∑
i=1

|T ||ai| ∈ E(A)

holds and therefore Tx ∈ E(A), since E(A) is an ideal. It follows E(A) is invariant for all T ∈ A .
So E(A) is A -invariant. By 4.37 the second statement follows.
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5 Orthomorphisms

In this section we zoom in on the class of orthomorphisms, which leave all bands invariant. These
operators will play a key role in the definition and theorems concerning the order bicommutant.

5.1 Basis definitions and properties

First we state some well-known facts about orthomorphisms needed for later purposes. A more
complete discussion can be found in [AL].

5.1 Definition. An operator T on a Riesz space E is band preserving whenever T leaves all
bands of E invariant.

Note that sums and products of band preserving operators are again band preserving. Intersect-
ing the algebra of band preserving operators with Lb(E) gives us the algebra of orthomorphisms.

5.2 Definition. A band preserving operator on a Riesz space that is also order bounded is
called an orthomorphism. The algebra of orthomorphisms is denoted by Orth(E).

5.3 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. We char-
acterize the orthomorphisms on EX . Let S ∈ Orth(EX). Fix x ∈ X. Consider the map
Sx : E → E given by Sxy = (Sfy)(x), where fy ∈ EX is a function such that fy(x) = y. First
we show Sx is well-defined. Take f, g ∈ EX such that f(x) = g(x). Clearly f − g is in the band
B = {h ∈ EX : h(x) = 0} ⊂ EX . Since S is an orthomorphism, S(f−g) is also in B. Therefore,
we have (Sf)(x)− (Sg)(x) = [S(f − g)](x) = 0 implying (Sf)(x) = (Sg)(x). We conclude that
Sx is well-defined and independent of the choice of the function fy.

It is a straightforward check that Sx is an order bounded operator. We show Sx is an or-
thomorphism. Let B ⊂ E be a band. The subspace A = {f ∈ EX : f(x) ∈ B} is a band in EX

by 3.36. Let y ∈ B, then fy is contained in A for all functions fy ∈ EX with fy(x) = y. We
have Sxy = (Sfy)(x) ∈ B, because Sfy is in A. We conclude that for each x ∈ X there exists
an orthomorphism Sx ∈ Orth(E) such that (Sf)(x) = Sx[f(x)]. So all orthomorphisms on EX

are described in such a way. Conversely, if Sx is an orthomorphism on E for each x ∈ X, then
the operator S on EX defined by (Sf)(x) = Sx[f(x)] is an orthomorphism.

Take for example E = R. For every m ∈ RX the multiplication map Rm : RX → RX given by
Rmf = mf is an orthomorphism. Moreover, all orthomorphisms are given by such a multipli-
cation map. The maps Sx : R → R for x ∈ X are in this case given by multiplication with a
number m(x). We obtain Orth(RX) is order isomorphic with RX itself. �

In fact the algebra of orthomorphisms is also a band.

5.4 Proposition. If E is a Dedekind complete Riesz space, then Orth(E) coincides with the
band generated by the identity operator I in Lb(E).

Proof. [AL, Theorem 2.45]

33



Now Ln(E) is a band in Lb(E) containing I by 4.14. Therefore, we have the following corollary.

5.5 Corollary. If E is a Dedekind complete Riesz space, Orth(E) is a band algebra in Ln(E).

The following example shows the inclusion of the orthomorphisms in the order continuous op-
erators can be proper.

5.6 Example. Consider the Dedekind complete Riesz space EX from Example 3.7. Let #X ≥ 3
and E 6= {0}. Take three different elements x, y, w in X. Let j : X → X the transposition of
the elements y and w. As in Example 4.28 the operators Tj : EX → EX , Tjf = f ◦ j does not
leave B = {f ∈ EX : f(x) = 0 = f(y)} invariant. By Example 4.13 Tj is order continuous, but
not an orthomorphism. �

Quite surprising is the fact that all orthomorphisms commute.

5.7 Proposition. If E is a Dedekind complete Riesz space, then Orth(E) is a commutative full
subalgebra of Lb(E).

Proof. [MN, Theorems 3.1.9 and 3.1.10]

There is an easy condition for an orthomorphism to be invertible.

5.8 Proposition. Let E be a Dedekind complete Riesz space. Each orthomorphism T ∈ Orth(E)
satisfying T ≥ I is invertible in Lb(E).

Proof. [ZL, Theorem 146.3]

The following proposition is an important tool for estimations involving orthomorphisms.

5.9 Proposition. Let E be a Dedekind complete Riesz space and T ∈ Orth(E). For all x ∈ E
we have

|T ||x| = |T |x|| = |Tx|.

Proof. [AL, Theorem 2.40]

It should be mentioned that the previous proposition is true for a more general setting. However,
we refer to [AL] for this, since our use will be limited to the orthomorphisms on Dedekind
complete Riesz spaces. The kernel of an orthomorphism has a nice description.

5.10 Proposition. If E is a Dedekind complete Riesz space and T ∈ Orth(E), then ker(T ) is
a band.

Proof. [AL, Theorem 2.48]

Fix a positive element x. The last result of this paragraph shows that elements in the ideal
generated by x are actually evaluations of orthomorphisms in x.

5.11 Proposition. Let E be a Dedekind complete Riesz space and x ∈ E+. For each y ∈ E(x)
there exists and orthomorphism T ∈ Orth(E) such that T (x) = y.
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Proof. [AL, Theorem 2.49]

This proposition will play an important role in the proof in of an order bicommutant theorem.

5.2 Order projections

Projections play an important role in the proof of the von Neumann Bicommutant Theorem.
This will be of no difference for the results concerning the order bicommutant. In this paragraph
we state some well-known facts. A more complete discussion about projections on Riesz spaces
can be found in [AL].

If B is a band in a Dedekind complete Riesz space E, we can decompose the Riesz space
as E = B ⊕ B⊥ by 3.41. Thus every x ∈ E can be decomposed uniquely as x = x1 + x2
with x1 ∈ B and x2 ∈ B⊥. This gives rise to a projection PB on B given by PBx = x1 with
ran(P ) = B and ran(I − P ) = B⊥. So P and I − P have orthogonal ranges. This brings us to
the following equivalent statements resulting in the definition of an order projection.

5.12 Proposition. Let E be a Dedekind complete Riesz spaces and P : E → E be an operator.
The following statements are equivalent

i. P and I − P have orthogonal ranges;

ii. P is a projection, ran(P ) is a band and ker(P ) = ran(P )⊥;

iii. P is a projection satisfying 0 ≤ P ≤ I.

Proof. [AL, Theorem 1.44]

5.13 Definition. An operator on a Dedekind complete Riesz space E satisfying any of the
equivalent statements in 5.12 is called an order projection. We will denote the set of order
projections by P(A).

5.14 Example. Consider the Dedekind complete Riesz space EX from Example 3.7 with E = R.
Let Y ⊂ X. Following Example 3.42 the order projection P on the band BY = {g ∈ RX : g(x) =
0 for all x ∈ Y } is given by Pf = χX\Y f . �

By combining 5.4 and 5.12 we see each order projection is an orthomorphism. Moreover, by 5.7
the product of two order projections is again an order projection, which satisfies 0 ≤ P ≤ I by
applying 4.17 two times. This brings us to our next statement.

5.15 Proposition. If E is a Dedekind complete Riesz space, then P(A) is a multiplicatively
closed subset of Orth(E) ⊂ Ln(E).

5.16 Example. Consider the Dedekind complete Riesz space EX from Example 3.7 with E = R.
Let m ∈ RX be a function such that m2 = m. It holds m(x)2 = m(x) for each x ∈ X and
therefore m(x) must be either zero or one. It follows 0 ≤ m ≤ 1. We see the operator Rm from
Example 5.3 satisfies R2

m = Rm and 0 ≤ Rm ≤ I. Hence Rm is an order projection. On the
other hand, if m ∈ RX does not satisfy m2 = m, then we have R2

m1 = m2 6= m = Rm1. It
follows Rm does not satisfy R2

m = Rm and is therefore not an (order) projection. Consequently,
P(RX) can be identified with the set of characteristic functions on X. �
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Given an order projection, the range is a band. Conversely, the text above 5.12 shows that given
a band B, we can find an order projection which has range B. We make the following important
observation.

5.17 Proposition. Let E be a Dedekind complete Riesz space. There exists a one-to-one cor-
respondence between order projections and bands in E. An order projection P : E → E gives
rise to a band ran(P ) and conversely a band B ⊂ E gives rise to an order projection PB on B.

Using Proposition 5.12 we derive that, if P is an order projection on a Dedekind complete Riesz
space with range B, then I − P is also an order projection with range B⊥. If a band B is
generated by a single element, we have a nice formula for the order projection on B.

5.18 Proposition. Let E be a Dedekind complete Riesz space and x ∈ E. The order projection
P on the band B(x) generated by x is given by

P (y) = sup{y ∧ n|x| : n ∈ N} for y ∈ E+.

Proof. [AL, Theorem 1.47]

Finally, we state a less known result. Order projections on the Dedekind complete Riesz space
Ln(E) induce order projections on E.

5.19 Proposition. Let E be a Dedekind complete Riesz space. If P is an order projection on
Lb(E), then P := PI is an order projection on E.

Proof. By 5.12 P and I − P have orthogonal ranges, where I denotes the identity element in
Lb(Lb(E)). Therefore, we have P ∧ (I − P ) = PI ∧ (I − P)I = 0. It follows 0 ≤ P ≤ I. So
we only have to show P 2 = P by 5.12. From 0 ≤ P ≤ I and 4.17 we deduce 0 ≤ P 2 ≤ P and
0 ≤ (I − P )2 ≤ (I − P ). So we conclude 0 ≤ P 2 ∧ (I − P )2 ≤ P ∧ (I − P ) = 0. We compute

0 = P 2 ∧ (I − P )2 = (P + P 2 − P ) ∧ (I − P + P 2 − P ) = P ∧ (I − P ) + P 2 − P = P 2 − P.

Therefore it follows P 2 = P and thus P is an order projection.
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6 Atomic Riesz spaces

We will derive an order bicommutant theorem for the class of atomic Riesz spaces, which we
consider in this paragraph.

6.1 Definition. A positive element x in a Riesz space is an atom if the ideal E(x) generated
by x is one-dimensional.5

Clearly, if E(x) is one dimensional, it is equal to the linear span of x. If the Riesz space is
Archimedean, the linear span of x is a band.

6.2 Proposition. Let E be an Archimedean Riesz space and x an atom in E. Then it holds
B(x) = {αx : α ∈ R}.

Proof. [ZA, Theorem 26.4]

6.3 Corollary. Let E a Dedekind complete Riesz space and x an atom in E. There exists a
Riesz homomorphism ζx : E → R such that the projection Px on the band B(x) generated by x
is given by Pxu = ζx(u)x.

6.4 Definition. A Riesz space E is atomic if there exists a maximal orthogonal system of E
consisting of atoms.

6.5 Example. Consider the Riesz spaces `p(X) and RX from Example 3.35. Both spaces are
atomic, since S = {χ{y} : y ∈ X} ⊂ `p(X) ⊂ RX is a maximal orthogonal system consisting of
atoms. Here χ{y} denotes the characteristic function of the subset {y} of X. �

In atomic Dedekind complete Riesz spaces the identity operator is approached by a net of sums
of rank one order projections. This is an important facet in the proof of the order bicommutant
theorem for atomic Riesz spaces.

6.6 Proposition. Let E be an atomic Dedekind complete Riesz space. Denote by S a maximal
orthogonal system consisting of atoms. For z ∈ E denote by Pz the projection on the band B(z)
generated by z. Denote by SH the operator SH =

∑
v∈H Pv for H ⊂ S finite. Then SH ↑ I

holds, where I denotes the identity operator.

Proof. Take x ∈ E+ and define xn,H =
∑

u∈H x ∧ nu for n ∈ N and H ⊂ S finite. By 3.32 it
holds xn,H ↑n,H x. Since two different atoms u, v ∈ S are orthogonal, we have that elements
x ∧ nu ∈ E(u) and x ∧ nv ∈ E(v) are orthogonal. By 3.30 it yields for n ∈ N and H ⊂ S finite

xn,H =
∑
u∈H

x ∧ nu =
∨
u∈H

x ∧ nu.

With the aid of 3.30 and 5.18, we calculate for H ⊂ S finite

sup
n
xn,H = sup

n

∨
u∈H

[x ∧ nv] =
∨
u∈H

sup
n

[x ∧ nv] =
∨
u∈H

Pux =
∑
u∈H

Pux

5Some authors call this a ‘discrete element’ and have a more general definition for an atom, see [ZA, Definition
26.1]. However, for Archimedean Riesz spaces both terms coincides by [ZA, Theorem 26.4].
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Using the above facts we derive

x = sup
n,H

xn,H = sup
H

sup
n
xn,H = sup

H

∑
u∈H

Pux = sup
H
SHx.

Furthermore, SH1x ≤ SH2x holds for H1 ⊂ H2, since order projections are positive by 5.12.
Combining these facts we obtain SHx ↑ x for all x ∈ E+. By applying 4.10 the claim follows.

Every atomic Dedekind complete Riesz space E, with maximal orthogonal system S consisting
of atoms, is order isomorphic to a Riesz subspace of RS . The order isomorphism ψ : E → RS
is given by ψ(x) = (ζu(x))u∈S , where ζu is as in 6.3. If ψ(x) = 0 for some x ∈ E, then x ⊥ u
holds for all u ∈ S. Since S is a maximal orthogonal system, it follows x = 0. Therefore, ψ
is indeed an injective Riesz homomorphism and E is order isomorphic with the Riesz subspace
ψ(E) ⊂ RS .
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7 Freudenthal’s Spectral Theorem

The Freudenthal Spectral Theorem is an important approximation result for elements of a singly
generated band. This result will be of significant importance in the proof of the reflexivity result
concerning the order bicommutant.

7.1 Theorem. Let E be a Dedekind complete Riesz space and x ∈ E+. Let y be an element
in the band B(x) generated by x. For α ∈ R define Pα to be the order projection on the band
B((αx − y)+) generated by (αx − y)+. Moreover, take intervals [an, bn] ⊂ R for every n ∈ N
such that 0 ≥ an ↓ −∞ and 0 ≤ bn ↑ ∞. Let πn(αn,0, . . . , αn,mn) be a partition of the interval
[an, bn] such that the restriction of πn+1 to [an, bn] is a refinement of πn and for the mesh we
have |πn| ↓ 0 if n→∞. Define

yn =

mn∑
k=1

αn,k−1(Pαn,k − Pαn,k−1
)x for n ∈ N.

The sequence {yn}n∈N converges in order to y.

Proof. [ZA, Theorem 40.3]

We apply the Freudenthal Spectral Theorem to the approximation of orthomorphisms.

7.2 Corollary. Let E be a Dedekind complete Riesz space. Then Orth(E) coincides with the
set of order limits of sequences of linear combinations of projections. More precisely, every
orthomorphism S ∈ Orth(E) is the order limit of a sequence from the linear span of {Pα : α ∈ R},
where Pα = sup{I ∧ n(αI − S)+ : n ∈ N} is an order projection on E.

Proof. Let S ∈ Orth(E) be an orthomorphism. The orthomorphism algebra Orth(E) is the
band generated by the identity operator I in Lb(E) by 5.4. Hence we can apply Freudenthal’s
Spectral Theorem to S ∈ B(I) ⊂ Lb(E). For α ∈ R denote by Pα the order projection on the
band B((αI −S)+) ⊂ Lb(E) generated by (αI −S)+ ∈ Lb(E) and write Pα = PαI. By 5.19 the
operator Pα is an order projection for each α ∈ R, moreover, by 5.18 we have

Pα = PαI = sup{I ∧ n(αI − S)+ : n ∈ N}.

By applying Freudenthal’s spectral Theorem 7.1, there exists a sequence of operators {Sn}n
converging in order to S, where, for each n ∈ N, the operator Sn is a linear combination of
elements PαI, α ∈ R. It follows S is the order limit of the sequence {Sn}n contained in the
linear span of {Pα : α ∈ R}.
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8 The commutant

Before going into detail about the order bicommutant, we stress some important properties
about commutants in Lb(E).

8.1 Commuting operators

Before we state some results about the commutant of a set of operators in Ln(E), we will need
some preliminary results about commuting operators. First of all order convergence behaves
well with respect to commuting operators.

8.1 Proposition. Let E be a Dedekind complete Riesz space and T ∈ Ln(E). Let Sα
o−→ S in

Lb(E). If T commutes with Sα for each α, then T commutes with S.

Proof. By definition there exists some net {Rα}α such that |Sα−S| ≤ Rα ↓ 0. Let y ∈ E, then
we have |Sαy − Sy| ≤ |Sα − S||y| ≤ Rα|y| ↓ 0 by 4.10. It follows Sαy

o−→ Sy for all y ∈ E. We
obtain by order continuity of T and 3.21

0 = TSαy − SαTy
o−→ TSy − STy.

Therefore, TSy = STy holds for all x ∈ E. We conclude TS = ST .

In the results about the von Neumann bicommutant the projection Lemma 2.9 was a main tool.
This will also be the case when concerning the order bicommutant. However, the statement will
be somewhat different, since we have no natural notion of an adjoint in Riesz spaces. Commuting
with an order projection is equivalent to being reduced by the corresponding band (see 5.17).

8.2 Lemma (Projection Lemma). Let E be a Dedekind complete Riesz space and T ∈ Lb(E).
A band B ⊂ E is T -reducing if and only if PT = TP for the order projection P on B.

Proof. Suppose B is T -reducing. Take x ∈ E and let I − P the order projection on B⊥. Since
TPx ∈ B and T (I − P )x ∈ B⊥, we derive

TPx = PTPx = PTPx+ PT (I − P )x = PTx.

Therefore, P commutes with T . Conversely, suppose P commutes with T . We have TB =
TPB = PTB ⊂ B. The fact that the projection I−P also commutes with T yields TB⊥ ⊂ B⊥
by a completely analogous argument. It follows that B is T -reducing.

8.2 The commutant

In section 2 we took the commutant inside the bounded operators. For Riesz spaces the order
continuous operators seem to be the most fruitful context to work in, because for positive group
representations, the subject that motivated our study of the order bicommutant, the natural
setting is Ln(E).
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8.3 Definition. Let E be a Dedekind complete Riesz space. For a subset A ⊂ Ln(E). We write
A c = {S ∈ Ln(E) : ST = TS for all T ∈ A} for the commutant of A in the order continuous
operators.

When A is contained in the orthomorphisms, the commutant has a nice structure.

8.4 Theorem. Let E be a Dedekind complete Riesz space and A ⊂ Orth(E) be a subset. The
commutant A c in Ln(E) is a band algebra containing I.

Proof. The fact that A c is an algebra is trivial. We show A c is a band. By combining
5.4 and 5.5 Orth(E) is the band generated by the identity operator I in Ln(E). For M ∈
Orth(E) consider the right and left multiplication operatorsRM , LM on Ln(E) given byRMT =
TM,LMT = MT . We are going to show RM ,LM ∈ Orth(Ln(E)). Let S ∈ Orth(E) be positive,
then by 3.39 there exists a net {Sα}α in the ideal generated by I such that 0 ≤ Sα ↑ S. Fix α,
there exists λα ∈ R>0 such that Sα ≤ λαI. Notice that for B ∈ Ln(E)+ by 4.17 and 4.18 we
have |BSα| ≤ |B|Sα ≤ λα|B|. For T ∈ Ln(E)+ we deduce using 4.5

|RSα |T = sup{|BSα| : |B| ≤ T} ≤ λα sup{|B| : |B| ≤ T} = λαT.

It follows |RSα | ≤ λαI with I the identity operator on Ln(E). Therefore, we conclude RSα ∈
Orth(Ln(E)) by applying 5.4. Furthermore, for T ∈ Ln(E) positive

(RS −RSα)T = T (S − Sα) ↓ 0

holds by 4.19. We conclude RSα ↑ RS by 4.10. It follows RS ∈ Orth(Ln(E)). Now take
S ∈ Orth(E) arbitrarily and write S = S+ − S−. We have S+, S− ∈ Orth(E)+ and thus the
previous yields RS+ ,RS− ∈ Orth(Ln(E)). It is clear RS = RS+ − RS− is also an element of
Orth(Ln(E)). By completely similar arguments one shows LS ∈ Orth(Ln(E)) for S ∈ Orth(E).
Note that we have

A c = {T ∈ Ln(E) : RST = LST for all S ∈ Orth(E)} =
⋂

S∈Orth(E)

ker(RS − LS).

By 5.10 ker(RS−LS) is a band in Ln(E), since it holdsRS−LS ∈ Orth(Ln(E)) for S ∈ Orth(E).
Being an intersection of bands, it follows A c is a band.

8.5 Example. Let m ∈ N and consider the Dedekind complete Riesz space Rm (see Example
3.7). Let D ∈ L(Rm) be an m×m-diagonal matrix. Following 5.3 we know D is an orthomor-
phism. The fact that {D}c is an ideal is a consequence of the above theorem. However, this can
also be shown by elementary means.

Suppose A ∈ Ln(Rm) = L(Rm) commutes with D. Let E be an eigenspace of D for some
eigenvalue λ. Take v ∈ E. We have DAv = ADv = λAv. Therefore, Av ∈ E holds and A leaves
all eigenspaces of D invariant. Decomposing Rm =

⊕n
i=1Ei in a direct sum of eigenspaces Ei

of D yields a decomposition A =
⊕n

i=1Ai with Ai : Ei → Ei.

Now suppose B ∈ L(Rm) satisfies |B| ≤ |A|. Write B = [Bij ]i,j=1,...,n with Bij : Ei → Ej
as a blockmatrix acting on the eigenspaces Ei. The inequality |B| ≤ |A| implies each matrix
entry of B is smaller or equal to the corresponding matrix entry of A. So we have Bij = 0 for
i 6= j. Therefore, B is also of the form B =

⊕n
i=1Bi with Bi : Ei → Ei. So B leaves every

eigenspace of D invariant. Let E be an eigenspace of D for some eigenvalue λ. Take v ∈ E. We
have BDv = λBv = DBv, because Bv is in E. Since Rm is a direct sum of eigenspaces of D, it
follows BD = DB. We conclude B ∈ {D}c and therefore {D}c is an ideal of L(Rm). �
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8.3 The commutant taken in the orthomorphisms

For defining the order bicommutant we also need the notion of the commutant taken inside the
orthomorphisms.

8.6 Definition. Let E be a Dedekind complete Riesz space. For a subset A ⊂ Ln(E) we define
A o = {S ∈ Orth(E) : ST = TS for all T ∈ A } = Orth(E) ∩ A c to be the commutant of A
taken in the orthomorphisms.

For this commutant as well we obtain a nice structure.

8.7 Theorem. Let E be a Dedekind complete Riesz space and let A ⊂ Ln(E) a subset. The
commutant A o is an order closed full Riesz subalgebra6 of Lb(E) and the linear span of its order
projections is sequentially order dense.

8.8 Example. Let m ∈ N and consider the Dedekind complete Riesz space Rm (see Example
3.7). By Example 5.3 Orth(Rm) equals the algebra of diagonal matrices. Let A ⊂ Ln(Rm) =
L(Rm). By the above theorem A o is a Riesz subspace. However, this can also be shown by
elementary means.

Take diagonal matrices D1, D2 ∈ A o. Fix A ∈ A . Following Example 8.5 all eigenspaces of D1

and D2 are left invariant by A. Therefore, there is a decomposition Rm =
⊕n

i=1Ei such that
D1 and D2 act as a scalar on each Ei and Ei is left invariant by A. Write D1 = diag(a1, . . . , an)
and D2 = diag(b1, . . . , bn). The supremum D1 ∨D2 is given by diag(a1 ∨ b1, . . . , an ∨ bn). Hence
the diagonal matrix D1∨D2 works also as a scalar on each Ei. Since the Ei are left invariant by
A, we know D1 ∨D2 commutes with A following 8.5. We conclude D1 ∨D2 ∈ A o and therefore
A o is a Riesz subspace.

Here we prove the result for the case where A is a Riesz subspace of Ln(E). Since we need
properties of the order bicommutant for showing the general statement, we defer the full proof
to paragraph 9.1.

8.9 Lemma. Let E be a Dedekind complete Riesz space and let A ⊂ Ln(E) a Riesz subspace.
The commutant A o is an order closed full Riesz subalgebra of Lb(E).

Proof. It is obvious A o is an algebra. The fact that A o is order closed follows immediately
from 8.1. We show A o is full in Lb(E). Take T ∈ A o invertible in Lb(E). For each S ∈ A
we have TS = ST . Applying T−1 on both sides of the previous identity yields ST−1 = T−1S.
Therefore, T−1 is contained in A o by 5.7. Hence A o is a full subalgebra of Lb(E).

We still have to show A o is closed under the lattice operations. By the last two identities
of 3.12 it is enough to show A o is closed under taking the absolute value. Suppose S ∈ A o, we
are going to show |S| ∈ A o. Since A is a Riesz subspace, every T ∈ A is a sum T = T+−T− of
two positive elements of A . Therefore, it is enough to show that |S| commutes with all positive
operators in A . Take A ∈ A +. We prove |S| commutes with A. Let x ∈ E+. By the third
identity of 3.12 we have (Sx)+ ∈ B((Sx)−)⊥ and (Sx)− ∈ B((Sx)+)⊥. Let P+ be the order
projection on the band B((Sx)+) and, similarly, let P− be the order projection on B((Sx)−).
Define B = AP+ −AP− ∈ Ln(E). We derive

A|Sx| = A[(Sx)+] +A[(Sx)−] = AP+[(Sx)+ − (Sx)−]−AP−[(Sx)+ − (Sx)−] = BSx.

6That is, a Riesz subspace and an algebra.
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By 5.7 S commutes with P+ and P− and thus S commutes with B = AP+ − AP−. Moreover,
B satisfies −A ≤ −AP− ≤ B ≤ AP+ ≤ A by 4.17, 5.12 and the positivity of A. Hence |B| ≤ A
holds. We obtain with the aid of 4.6 and 5.9 the following chain of inequalities

A|Sx| = BSx = SBx ≤ |SBx| ≤ |S||Bx| ≤ |S||B|x
≤ |S|Ax = |S||Ax| = |SAx| = |ASx| ≤ A|Sx|.

It follows we actually have equality and, in particular, A|Sx| = |S|Ax. Using 5.9 once again, we
conclude A|S|x = A|Sx| = |S|Ax for all x ∈ E+. Since an operator is completely determined by
its action on the positive cone, we have A|S| = |S|A. Therefore, |S| commutes with all positive
A ∈ A . So |S| is in A o and the claim follows.

Although the statement in 8.9 is not of full generality, we will need it as auxiliary result for
proving 8.7.

43



9 Order bicommutant theorems

In the previous section we derived in Theorem 8.4 that the commutant in Ln(E) of a subset of
the orthomorphisms is a band algebra. Moreover, when H is a Hilbert space and D ⊂ Lb(H) a
∗-closed subset, the von Neumann bicommutant D ′′ equals P(D ′)′ by 2.11. Since the sets D ′′

and P(D ′)′ agree, there are multiple possibilities to define an analogue of the von Neumann
bicommutant for Riesz spaces. In a Riesz space the band generated by the order projections
is equal to the orthomorphism algebra by 5.4 and 5.15. Since, furthermore, order projections
in the commutant correspond bijectively to reducing bands by the Projection Lemma 8.2, the
following definition seems to be the most natural and promising analogue of the von Neumann
bicommutant.

9.1 Definition. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) a subset. The
order bicommutant is the set (A o)c.

Similarly as for the von Neumann bicommutant, we obtain that (A o)c equals its own order
bicommutant.

9.2 Proposition. Let E be a Dedekind complete Riesz space, A ⊂ Ln(E) be a subset and
U = (A o)c be its order bicommutant. Then we have U o = A o and (U o)c = U .

Proof. Since A is contained in the order bicommutant U , we have U o ⊂ A o. This shows
one inclusion. Conversely, suppose T ∈ A o, then T ∈ Orth(E) commutes with all operators in
(A o)c = U . Therefore, T is in U o. This shows the other inclusion. It follows U o = A o and,
taking the commutant once again, yields the second claim immediately.

9.1 Q1: a description of the order bicommutant

The results of the previous section bring us directly to our first goal: describing the structure
of the order bicommutant.

9.3 Theorem. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) a subset. The order
bicommutant (A o)c is a band algebra containing the identity operator I.

Proof. This follows immediately from 8.4.

With this fact we are able to prove Theorem 8.7.

Proof of Theorem 8.7. Define U = (A o)c. By 9.3 this is a band, so in particular a Riesz
subspace. So 8.9 yields U o is an order closed full Riesz subalgebra of Lb(E). We have A o = U o

by 9.2. In combination with 9.5 below this gives the desired result.
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9.2 Q2: reflexivity

Similarly to the definition in paragraph 2.2, reflexive operator algebras are characterized by their
invariant bands.

9.4 Definition. Let E be a Dedekind complete Riesz space. A subset A ⊂ Lb(E) is reflexive,
if it is equal to the algebra of order bounded operators, which leave invariant each band left
invariant by every operator in A .

To obtain our reflexivity result, we first need a consequence of the Freudenthal Spectral Theorem.

9.5 Lemma. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) a subset. Every
orthomorphism S ∈ A o is the order limit of a sequence in the linear span of P(A o).

Proof. Let S ∈ A o be an arbitrary orthomorphism. By 7.2 we know S is the order limit of a
sequence in the linear span of {Pα : α ∈ R} with

Pα = sup{I ∧ n(αI − S)+ : n ∈ N}

an order projection on E. Fix α ∈ R. Since I and S are in A o and A o is a Riesz subspace
by 8.7, the elements I ∧ n(αI − S)+ are in A o. So Pα is in the commutant A o by 8.1, since
I ∧ n(αI − S)+ increases to Pα as n→∞. The result now follows.

The above result may be compared with 2.10. Our reflexivity result will be a consequence of
the following theorem.

9.6 Theorem. Let E be a Dedekind complete Riesz space and A ⊂ Ln(H) a subset. The order
bicommutant (A o)c equals P(A o)c.

Proof. The inclusion (A o)c ⊂ P(A o)c is trivial, because P(A o) is contained in A o. For the
other inclusion take T ∈ P(A o)c. Then T commutes with all projections in A o. Let S ∈ A o.
By 9.5 we know S is the order limit of a sequence {Sn}n in the linear span of P(A o). Clearly
T commutes with Sn for each n ∈ N. Therefore, T commutes with S by applying 8.1. Hence,
we have T ∈ (A o)c. Now the desired equality (A o)c = P(A o)c is obtained.

Applying the Projection Lemma yields a description of the order bicommutant in terms of
reducing bands, similar to 2.12 with ‘invariant closed subspace’ replaced by ‘reducing band’.

9.7 Theorem. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) a subset. Denote by

A red := {T ∈ Ln(E) : T is reduced by every A -reducing band}.

We have (A o)c = A red.

Proof. Suppose T ∈ (A o)c. Let B be an A -reducing band and denote by P the projection
on B. By 8.2 P commutes with every S ∈ A and it follows P ∈ A o. So P commutes with T
and therefore B is T -reducing by 8.2 again. It follows T ∈ A red, which shows one inclusion.
Conversely, suppose we have T ∈ A red. Let P ∈ A o be a projection on a band B. By Lemma
8.2 B is an A -reducing band and therefore B reduces T . Again by 8.2, T commutes with
P . Hence T commutes with all projections P ∈ A o. When applying 9.6, it follows T is in
P(A o)c = (A o)c, which implies the other inclusion.
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9.8 Example. Let E be a Dedekind complete Riesz space and A ⊂ Orth(E). Since Orth(E)
is commutative by 5.7, we have Orth(E) = A o and Orth(E) ⊂ Orth(E)c. On the other hand, if
we take T ∈ Orth(E)c, then T commutes with every order projection. Therefore, T leaves every
band invariant by 8.2. So T is an orthomorphism. Consequently, we have Orth(E) = Orth(E)c

and, moreover, (A o)c = Orth(E). This shows Orth(E) is a maximal abelian subalgebra of
Lb(E). Note the equality (A o)c = Orth(E) also becomes clear by applying Theorem 9.7 above
and observing A red = Orth(E). �

However, in 2.12 we obtained a description in terms of invariant closed subsets. For this we
used ∗-invariant subsets are reduced by invariant subspaces. To obtain a similar statement we
require A to have the ∗-property.

9.9 Corollary. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) have the ∗-property.
Denote by

A inv := {T ∈ Ln(E) : T leaves every A -invariant band invariant}.

We have (A o)c = A inv = A red.

Proof. Let T ∈ A red. Suppose B ⊂ E is an A -invariant band. Since A has the ∗-property,
it follows B reduces A . So B reduces T and it follows T leaves B in particular invariant. We
conclude T ∈ A inv. Conversely, let T ∈ A inv. Suppose a band B ⊂ E reduces A , then B and
B⊥ are A -invariant. So B and B⊥ are invariant under T . We conclude that B reduces T and
therefore T ∈ A red holds. Hence A red = A inv. By 9.7 we have (A o)c = A red = A inv.

Finally, we gain reflexivity for the order bicommutant of a subset of Ln(E) with the ∗-property.

9.10 Corollary. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) have the ∗-property.
The order bicommutant U = (A o)c is reflexive.

Proof. First we show U has the ∗-property. Let therefore B be a band invariant under U .
Since A is clearly contained in U , the band B is also A -invariant. Since A has the ∗-property,
B reduces A . By 9.7 every T ∈ U = A red is reduced by B. We infer B reduces U . Combining
9.2 and 9.9 we obtain U = U inv and hence U is reflexive.

By combining the last two results, we obtain all reflexive subsets of Ln(E) with the ∗-property
are order bicommutants.

9.11 Corollary. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) have the ∗-property.
The equality A = (A o)c holds if and only if A is reflexive.

Theorem 9.7 yields another elegant proof of 9.3, without using 8.4.

Alternative proof for 9.3. By applying 9.7 we observe

(A o)c = A red =
⋂
B⊂E

reduces A

{T ∈ Ln(E) : B reduces T}

is a band algebra, since it is an intersection of band algebras {T ∈ Ln(E) : B reduces T} by
4.31. The fact that (A o)c contains the identity operator I is obvious.
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9.3 Q3: Schur’s Lemma

For the commutant, taken inside the orthomorphisms, we now derive Schur’s Lemma. It can
immediately be deduced from the results obtained in the previous paragraph. As in the previous
paragraph we again need the ∗-property, which is the analogue of ∗-invariance for Riesz spaces,
to replace reducing bands by invariant bands.

9.12 Theorem (Schur’s Lemma). Let E be a Dedekind complete Riesz space and A ⊂ Ln(E)
a subset. The following statements are equivalent.

i. The only reducing bands for A are the trivial ones: {0} and E.

ii. The commutant taken in the orthomorphisms A o consists of multiples of the identity
operator I ∈ Ln(E).

Proof. Suppose (i) holds. Let P ∈ P(A o) be a projection in A o and the band B its range. By
the projection Lemma 8.2 B is A -reducing. By assumption B is trivial and hence P is either 0
or I. Now applying 9.5 every S ∈ A o is the order limit of some sequence in the linear span of
the identity operator I in Ln(E). By 3.27 it follows S must be a multiple of the identity. We
conclude that A o consists of multiples of the identity operator. Conversely, assume (ii). Let
B ⊂ E be an A -reducing band. By 8.2 the projection P on B is in A o. By assumption we have
P(A o) = {0, I} and thus P is either 0 or I. We conclude that B is a trivial band. So the only
bands that reduce A are the trivial ones.

Since the reducing and invariant bands for A coincide when A has the ∗-property, we immedi-
ately derive the following analogue of 2.15.

9.13 Corollary (Schur’s Lemma ∗). Let E be a Dedekind complete Riesz space and A ⊂ Ln(E)
a subset with the ∗-property. The following statements are equivalent.

i. The only invariant bands for A are the trivial ones: {0} and E.

ii. The commutant taken in the orthomorphisms A o consists of multiples of the identity
operator I ∈ Ln(E).

9.14 Example. Consider Example 3.35 with F either `p(X) or RX and X = N. Consider the
permutation h : N → N, given by h(1) = 2, h(n) = n− 2 if n 6= 1 is odd and h(n) = n+ 2 if n
is even. Observe the cycle notation for h is given by

. . .→ 9→ 7→ 5→ 3→ 1→ 2→ 4→ 6→ 8→ . . . .

Let A = {T kh : k ∈ Z} with Th ∈ Ln(F ) given by Thf = f ◦ h.

Let B be an A -reducing band. By 3.36 B is of the form BI = {f ∈ F : f(n) = 0 for all n ∈ I}
for some I ⊂ N. Clearly, {0} = BN and F = B∅ are A -reducing. Now suppose I 6= ∅ is a proper
subset of N. There exists some n,m ∈ I with n ∈ I and m /∈ I. From the cycle notation of h we
see each number can be reached by applying h and h−1 a finite amount of times. Hence we have
m = hk(n) for some k ∈ Z. Observe the characteristic function χ{m} on {m} is contained in

BI . We have T khχ{m} = χ{n} /∈ BI , hence T kh does not leave BI invariant. It follows BI cannot
be A -reducing. We conclude that the only A -reducing bands are the trivial ones. By 9.12 it
follows A o consists of multiples of the identity operator. Consequently, we have (A o)c = Ln(E).

�
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9.4 Q4: approximation results

We follow a similar approach to obtain pointwise approximation as in 2.16. So for this we need
the order equivalent 8.2 of the projection Lemma 2.9. In 2.9 we used that for a ∗-closed subset A
of the bounded operators on a Hilbert space every A -invariant closed subspace is A -reducing.
For Riesz spaces will therefore need the analogue of ∗-invariance: the ∗-property.

9.15 Proposition. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) a unital band
algebra with the ∗-property. For all T ∈ (A o)c and y ∈ E there exists a net {Tα}α in A such
that Tαy

o−→ Ty. Moreover, if T and y are positive there exists a net {Tα}α in A such that
0 ≤ Tαy ↑ Ty.

Proof. Since A is a unital band, we have Orth(E) ⊂ A by 5.4. Take T ∈ (A o)c and y ∈ E
arbitrary. Now consider the set G = {Ry : R ∈ A }. We show G is an ideal of E. Firstly,
observe |Ry| = (Ry)+ + (Ry)− and (Ry)+ ⊥ (Ry)− by 3.12. For z ∈ E denote by Pz ∈ Orth(E)
the projection on the band B(z) generated by z. Hence for R ∈ A we have

|Ry| = (P(Ry)+ + P(Ry)−)Ry ∈ G,

using A is an algebra and Orth(E) ⊂ A . Now, consider z ∈ E such that 0 ≤ |z| ≤ |Ry| for some
R ∈ A . By 5.11 there exists U ∈ Orth(E) ⊂ A such that U |Ry| = z. Since |Ry| is in G and A
is an algebra, we have z = U |Ry| ∈ G. It follows G is an ideal. Since G is A -invariant, the band
B(G) generated by G is A -invariant by 4.37. Hence B(G) is A -reducing, because A has the
∗-property. The band B(G) is also T -reducing by 9.7. Since A is unital, we have y ∈ G ⊂ B(G).
We derive Ty ∈ B(G). Hence there exists a net {Tα}α in A such that Tαy

o−→ Ty, since B(G)
is the order closure of the ideal G. The first claim follows. Now if T and y are both positive it
follows by 3.39 there exists a net {Tα}α in A such that 0 ≤ Tαy ↑ Ty. This implies the second
claim.

In contrast to the global approximation result 2.18 for the von Neumann bicommutant, we
obtain an approximation result perturbed by orthomorphisms. This has to do with the fact that
the diagonal algebra of a band algebra is not an ideal, let alone a band. So Proposition 9.15
cannot be applied on the diagonal algebra.

9.16 Lemma. Let E be a Dedekind complete Riesz space and X a set. Consider the Riesz space
EX of functions f : X → E. Let A ⊂ Lb(EX). For R ∈ Lb(E) define R∞ ∈ Lb(EX) given by
[R∞f ](x) = R[f(x)], x ∈ X. For U ⊂ Lb(EX) define U ∞ = {R∞ ∈ Lb(EX) : R ∈ A }. The
inclusion ((A o)c)∞ ⊂ ((A∞)o)c holds.

Proof. Let A∞ ∈ ((A o)c)∞ for some A ∈ (A o)c and B ∈ (A∞)o ⊂ Orth(EX). By 5.3 there
exists for each x ∈ X an orthomorphism Bx ∈ Orth(E) such that B is given by (Bf)(x) =
Bx[f(x)]. Let C∞ ∈ A∞ for some C ∈ A , then B commutes with C∞. Fix x ∈ X. For y ∈ E
let fy be a function such that fy(x) = y. We have for each y ∈ E

CBxy = C[(Bfy)(x)] = [C∞Bfy](x) = [BC∞fy](x) = Bx[(C∞fy)(x)] = BxCy.

So C commutes with Bx for all C ∈ A . Therefore, Bx is an element of A o for each x ∈ X. It
follows A commutes with Bx for each x ∈ X. Now observe for all f ∈ EX and x ∈ X

[A∞Bf ](x) = A[(Bf)(x)] = ABx[f(x)] = BxA[f(x)] = Bx[(A∞f)(x)] = [BA∞f ](x).

Therefore, A∞ commutes with B for each B ∈ (A∞)o. We conclude that A∞ is contained in
((A∞)o)c and the claim follows.
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9.17 Lemma. Let E be a Dedekind complete Riesz space and X a set, such that A ⊂ L(E)
has the ∗-property. Then A∞ ⊂ L(EX) (as in 9.16) has the ∗-property too.

Proof. Let B ⊂ EX be an A∞-invariant band. By 3.36 there exists bands Bx ⊂ E for each
x ∈ X such that B has the form

B = {f ∈ EX : f(x) ∈ Bx for all x ∈ X}.

Now let T ∈ A and y ∈ Bx for some x ∈ X. Let fy ∈ EX be the function such that fy(x) = y
and fy(z) = 0 for z 6= x. Then we have fy ∈ B and therefore we have T∞fy ∈ B. We conclude
Bx 3 [T∞fy](x) = T [fy(x)] = Ty. So T leaves Bx invariant for each x ∈ X. Therefore, Bx is A -
invariant for all x ∈ X. Hence Bx is A -reducing for each x ∈ X as A has the ∗-property. Now
let T∞ ∈ A∞ for some T ∈ A . By 3.36 we know B⊥ = {f ∈ EX : f(x) ∈ B⊥x for all x ∈ X}.
For all f ∈ B⊥ we have (T∞f)(x) = T [f(x)] ⊂ B⊥x using T leaves B⊥x invariant. We conclude
that B⊥ is A∞-invariant and therefore that A∞ has the ∗-property.

9.18 Theorem. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) a unital Riesz
subalgebra with the ∗-property. For all T ∈ ((A )o)c there exists a net {Sα}α in A such that for
all x ∈ E there exists a net {Rxα}α of orthomorphisms such that RxαSαx

o−→ Tx.

Proof. Define U = A + to be the positive part of A . By 4.17 U is closed under multiplication.
Consider the identity function f ∈ EE given by f(x) = x. Let U ∞ ⊂ Ln(EE) be as in 9.16. It is
clear U ∞ consists of positive operators and is multiplicatively closed, since U satisfies those two
properties. Consider the set U ∞f ⊂ (EE)+. Since U ∞ is closed under multiplication, U ∞f
is U ∞-invariant. By 4.38 the band D = B(U ∞f) is U ∞-invariant. Let T∞ ∈ A∞ for some
T ∈ A . Then decompose T = T+ − T− with T+, T− ∈ A + = U , using A is a Riesz subspace.
We derive T∞ = (T+)∞ − (T−)∞ with (T+)∞, (T−)∞ ⊂ U ∞. It follows D is invariant under
T∞ for all T ∈ A . So D is A∞-invariant.

Since A∞ has the ∗-property by 9.17, D is A∞-reducing. Let T ∈ (A o)c. By Lemma 9.16 T∞

is an element of ((A∞)o)c. By 9.7 it follows the band D reduces T∞. The identity operator
I is in A and thus also in U . Hence I∞ is an element of U ∞. Therefore, it follows f is in
D and hence also T∞f is an element of D . So there exists a net {gα}α in E(U ∞f) such that
gα

o−→ T∞f implying gα(x)
o−→ [T∞f ](x) = T [f(x)] = Tx for all x ∈ E by 3.20. Fix α. By

3.39 there exists Sα1 , . . . , S
α
nα ∈ U and λα > 0 such that

|gα| ≤ λα
nα∑
i=1

(Sαi )∞f = S∞α f for Sα := λα

nα∑
i=1

Sαi ∈ U ,

where we used A is in particular a subspace and the sum Sα is in A + = U . Now fix x ∈ E.
We have

|gα(x)| = |gα|(x) ≤ [S∞α f ](x) = Sα[f(x)] = Sαx

By 5.11 there exists an orthomorphism Rxα ∈ Orth(E) such that gα(x) = RxαSαx. We conclude
that RxαSαx = gα(x) converges to Tx for all x ∈ E.

Currently, it is not clear whether a converse of the above theorem holds true. A promising
approach is the following. Let T in Ln(E) and suppose there exists a net {Sα}α in A such that
for all x ∈ E there exists a net {Rxα}α of orthomorphisms such that RxαSαx

o−→ Tx. Then for
each U ∈ A o we have U(Rxα − RUxα )Sαx

o−→ TUx − UTx for all x ∈ E. So in order for T and
U to commute, we need Rxα and RUxα to agree on Sαx. Hence, we need a better understanding
of the orthomorphisms Rxα to answer this question. This is left for further research.
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9.5 Q5: an order bicommutant theorem for atomic Riesz spaces

Since we do not obtain a global approximation result for the order bicommutant, we can not
proceed in a similar way as in 2.19. In [PI] a bicommutant theorem is shown for atomic σ-
complete Boolean algebras of projections on a Banach space7. This motivates us to focus on
atomic Riesz spaces from now on. Here it is possible to avoid the diagonalization process.

9.19 Theorem. Let E be a Dedekind complete atomic Riesz space. Let A ⊂ Ln(E) be a subset
with the ∗-property. We have (A o)c = A if and only if A is a unital band algebra.

Proof. If (A o)c = A holds, then by Corollary 9.3 A is a band algebra with I ∈ A . Conversely,
suppose A is a unital band algebra. First, note Orth(E) ⊂ A by 5.4, since A is a unital band.
The inclusion A ⊂ (A o)c is trivial. For the other inclusion take T ∈ (A o)c positive. Since E
is atomic, there exists a maximal orthogonal system S ⊂ E consisting of atoms. Let x ∈ S be
an atom. By 9.15 there exists a net {Sxα}α in A such that 0 ≤ Sxαx ↑ Tx. For x ∈ S denote by
Px the projection on the band B(x) generated by x. By 6.3 there exists a positive functional ζx
such that Pxy = ζx(y)x. Consider the net {SxαPx}α in A , where we used A contains Orth(E)
and P(E) ⊂ Orth(E) by 5.15. For all positive y ∈ E we have

SxαPxy = ζx(y)Sxαx ↑ ζx(y)Tx = TPxy.

By 4.10 we conclude SxαPx ↑ TPx. We have TPx ∈ A for each x ∈ S, since A is a band. Now
by 6.6 the operators

SH =
∑
x∈H

Px, H ⊂ S finite

increase to the identity operator I. Since TPx is in A for each x ∈ S, it follows TSH is an element
of A . By 4.19 it follows TSH ↑ T . Since A is a band, T is in A . We derive ((A o)c)+ ⊂ A .
Now take T ∈ (A o)c arbitrary. Write T = T+ − T− by 3.12. Because (A o)c is a band by 9.3,
we observe T+ and T− are in ((A o)c)+ and therefore in A . It follows T is an element of A .
The other inclusion (A o)c ⊂ A follows. We conclude A = (A o)c.

Combining the above result with 9.11 we obtain the following corollary.

9.20 Corollary. Let E be a Dedekind complete atomic Riesz space and A ⊂ Ln(E) have the
∗-property. The subset A is reflexive if and only if A is a unital band algebra.

We can sharpen 9.19, as is done in 2.21.

9.21 Corollary. Let E be a Dedekind complete atomic Riesz space and A ⊂ Ln(E) absolutely
self-majorizing with the ∗-property. Then (A o)c equals bandalg(A ∪ {I}) = B(alg(A ∪ {I})).

Proof. We denote U = bandalg(A ∪{I}). The set A ∪{I} has the ∗-property, because A has
the ∗-property and I leaves every band invariant. So U has the ∗-property by 4.35. It follows
(U o)c = U by 9.19. Moreover, A is contained in U and therefore we have (A o)c ⊂ (U o)c = U .
This shows one inclusion. For the other inclusion observe that A and I are contained in (A o)c

and by 9.3 (A o)c is a band algebra. Hence U = bandalg(A ∪ {I}) is contained in (A o)c. This
shows the other inclusion. Finally, the equality bandalg(A ∪ {I}) = B(alg(A ∪ {I})) is the
content of Proposition 4.26.

7See section 11 and [BA].
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Combining Proposition 4.34 with the above we derive the following theorem.

9.22 Theorem. Let E be an atomic Dedekind complete Riesz space and denote by Autc(E)
the group of order continuous Riesz automorphisms on E. Let A ⊂ Autc(E) a subgroup. The
order bicommutant (A o)c equals B(A ) = bandalg(A ). Moreover, the band B(A ) generated by
A equals its order bicommutant.

Proof. Following 4.34 A has the ∗-property. Furthermore, A consists of positive operators
and is therefore absolutely self-majorizing. Consequently, we have (A o)c = bandalg(A ) by
applying 9.21 and noting A contains the identity element I of Autc(E). Finally, realizing A
is multiplicatively closed yields that B(A ) is a band algebra containing A by 4.24. Hence we
have bandalg(A ) = B(A ) and the first claim follows. By 4.35 the unital band algebra B(A ) =
bandalg(A ) has the ∗-property. Applying 9.19 it follows B(A ) equals its order bicommutant,
which is the second claim.

9.23 Example. Consider Example 3.35 with F either `p(X) or RX . With the aid of Example 6.5
we know F is an atomic Dedekind complete Riesz space. Let S(X) be the group of bijections on
X. Let H ⊂ S(X) be a subgroup and consider the subset A = {Th : h ∈ H}, where Th ∈ Ln(F )
is given by Thf = f ◦h. By Example 3.17 it follows that A is a subgroup of the order continuous
Riesz automorphisms Autc(F ). Following 9.22 the order bicommutant (A o)c equals the band
B(A ) generated by A . Moreover, B(A ) equals its order bicommutant. �

It can be that (A o)c becomes the whole space Ln(E) as is shown in Example 9.14. However,
this is not always the case.

9.24 Example. Consider the previous Example 9.23 and let #X ≥ 3. Let h ∈ S(X) a
transposition of two elements x, y ∈ X and consider the subgroup generated by H. Then
H = {id, h} has two elements. Let A = {Th : h ∈ H}. The band B = {f ∈ F : f(x) = 0 = f(y)}
is A -reducing. Let z ∈ X with z 6= x, y and g ∈ S(X) the transposition of the elements y and
z. Clearly, Tg leaves A not invariant and by 9.7 Tg can not be contained in (A o)c. This shows
(A o)c is not the whole space Ln(E). �

In 2.22 it is shown that each von Neumann algebra arises as the commutant of a group of
unitaries. Also the order bicommutant is always the commutant of a group of orthomorphisms.

9.25 Proposition. Let E be a Dedekind complete Riesz space and A ⊂ Ln(E) a subset. The
order bicommutant (A o)c equals U(A o)c, where U(A o) denotes the group of invertible ortho-
morphisms in A o.

Proof. The statement that U(A o) is a group, follows immediately from the fact that A o is a
unital full algebra in Lb(E) by 8.7. Since U(A o) is contained in A o, it follows (A o)c ⊂ U(A o)c.
Conversely, let T ∈ U(A o)c and S ∈ A o and write S = S+−S−. By 8.7 A o ⊂ Ln(E) is a Riesz
subspace. So the operators R1 := S+ + I and R2 := S− + I are in A o. We have R1, R2 ≥ I,
so R1 and R2 are invertible in Lb(E) by 5.8. Since A o is a full algebra in Lb(E), R1 and R2

are invertible in A o. Therefore, T commutes with R1, R2 and in particular with S = R1 −R2.
This implies T ∈ (A o)c. Finally, the other inclusion U(A o)c ⊂ (A o)c follows.

A consequence of the order bicommutant theorem for atomic Riesz spaces 9.19 is that every
unital band algebra with the ∗-property arises as the commutant of a group of orthomorphisms.
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9.26 Theorem. Let E be a Dedekind complete atomic Riesz space. A subset A ⊂ Ln(H)
with the ∗-property is a unital band algebra if and only if A is the commutant of a group of
orthomorphisms.

Proof. Suppose A is a unital band algebra. It follows A = (A o)c = U(A o)c by 9.19 and 9.25.
This shows A is the commutant of the group U(A o) of orthomorphisms. Conversely, suppose
A = Gc is the commutant of a group G of orthomorphisms on E. Proposition 8.4 yields A = Gc

is a unital band algebra.
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10 Conclusion

10.1 Summary of results

Let E be a Dedekind complete Riesz space. We answer the questions formulated in the intro-
duction.

Q1: Description of the bicommutant

For each subset A ⊂ Ln(E) the order bicommutant (A o)c is a unital band algebra.
It is interesting that, if E is a Banach lattice with order continuous norm8, then every
A ⊂ Ln(E) closed in the strong operator topology is order closed.9 Hence it could be
expected that the order bicommutant (A o)c is an order closed algebra.

Q2: Reflexivity

With the aid of the Freudenthal Spectral Theorem we retrieved that the order bicom-
mutant of a subset A ⊂ Ln(E) is completely determined by its reducing bands. To obtain
reflexivity, we need more. For the von Neumann bicommutant this is proved by means
of the adjoint in a Hilbert space. In Riesz spaces we have no natural counterpart of the
adjoint. If H is a Hilbert space, then each closed subspace, that is invariant under a ∗-
closed subset U of Lb(H), reduces U . Therefore, we zoomed in on subsets A of Ln(E)
such that each A -invariant band is in fact A -reducing. In that case A is said to have the
∗-property. The order bicommutant of subsets A ⊂ Ln(E) with the ∗-property is indeed
reflexive, similar to the situation for the von Neumann bicommutant. Moreover, a subset
A ⊂ Ln(E) with the ∗-property is reflexive if and only if A equals its order bicommutant.

Q3: Schur’s Lemma

For subsets A ⊂ Ln(E) we obtained a slightly different version of Schur’s Lemma than
known for Hilbert spaces. To wit, the commutant A o consists of multiples of the identity if
and only if the only A -reducing bands are the trivial ones. Again we need the ∗-property
to regain the original version of Schur’s Lemma. That is, for subsets A ⊂ Ln(E) with the
∗-property the commutant A o consists of multiples of the identity if and only if the only
A -invariant bands are the trivial ones.

Q4: Approximation results

We derived the bicommutant of A ⊂ Ln(E) is a unital band algebra. Approximation
in order of an operator S ∈ (A o)c by a net of operators in A may therefore be expected,
if A is a unital band algebra. Similarly, as for the von Neumann bicommutant, we obtain
for each x ∈ E there exists a net in A x converging in order to Sx, if A is a unital band
algebra with the ∗-property. However, the diagonalization process carried out to obtain
global approximation of the von Neumann bicommutant, does not work well for the or-
der bicommutant. This has to do with the fact that the diagonal algebra A∞ is not a
band. We still gain an approximation result, which is however pointwise perturbed by
orthomorphisms.

8That is, E is a Riesz space and a Banach space, such that |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ and xα ↓ 0 implies
‖xα‖ → 0.

9Order converge of a net {Sα}α to S in Lb(E) implies Sαx
o−→ Sx for all x ∈ E. By order continuity of the

norm we have norm convergence Sαx→ Sx for all x ∈ E.
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Q5: Bicommutant theorem

Since the diagonalization process does not help us to get global approximation in or-
der out of pointwise approximation, we searched for other methods. If E is atomic, the
identity on E is approximated by finite sums of rank one order projections. This gets us
around the obstruction mentioned above. We do retrieve global approximation here. So, if
E is atomic and A ⊂ Ln(E) has the ∗-property, then A equals its own order bicommutant
(A o)c if and only if A is a unital band algebra. Moreover, if A ⊂ Ln(E) is absolutely
self-majorizing with the ∗-property, then the order bicommutant is the unital band algebra
generated by A . So, in the case E is atomic, we obtain an analogue of the von Neumann
Bicommutant Theorem. Moreover, we derived the order bicommutant (A o)c is the com-
mutant of the group U(A o) of invertible orthomorphisms in A o. Combining facts gives
that, if E is atomic, then each A ⊂ Ln(E) with the ∗-property is a unital band algebra if
and only if A is the commutant of some group of invertible orthomorphisms.

To obtain the above results we studied the commutant taken in the continuous operators A c

and taken in the orthomorphisms A o. It is interesting in its own right that A o is an order
closed Riesz space and full subalgebra of Lb(E) for subsets A ⊂ Ln(E). Moreover, A c is a
band algebra, if A is a subset of Orth(E). Further, we mention there is progress made in
operator algebras on Riesz spaces. Thus, we have a better understanding of the multiplicative
structure on Lb(H) and introduced the concept of a band algebra. Furthermore, we answered
some questions about invariance under a set of operators on a Riesz space. For the precise
results we refer to section 4.

10.2 Further research

Perhaps the most pressing question is whether the bicommutant Theorem 9.19 can be extended
beyond atomic spaces. It is still an open problem whether 9.19 holds for all Dedekind complete
Riesz spaces. Riesz spaces with a weak order unit could be a good starting point for the exten-
sion of the theorem, because the order structure in these spaces is somewhat more convenient.
Another option is to study alternative proofs of the von Neumann Bicommutant Theorem, which
avoid the diagonalization process. This process is the main obstruction in generalizing the proof
of the von Neumann bicommutant Theorem 2.19 to an order bicommutant theorem.

The second question, which immediately comes to mind, is whether a converse of Theorem
9.18 holds true (for certain classes of Riesz spaces). A first promising attempt below 9.18 shows
we need a better understanding of the orthomorphisms Rxα to answer this question. Classes of
Riesz spaces for which the orthomorphisms are known seem to be a good starting point.

In the study of unitary representations on a Hilbert space, the von Neumann Bicommutant
Theorem is a basic result. For atomic Riesz spaces we have shown there is also such a notion.
Is this a good starting point for a study of groups representations? What can we derive from
combining this with the study of group representations on Banach lattices, done in [WO]?

Furthermore, it is interesting to change the setting. For example, one could take the order
bicommutant in the bounded operators Lb(E), instead of the order continuous operators Ln(E).
Do our results remain valid? If E is a Banach lattice, then E has also a topological structure
induced by a norm. Does this additional structure help us in proving more precise results?
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Finally, there is a large variety of results on von Neumann algebras inferred from the von
Neumann Bicommutant Theorem. In this thesis we only considered the five results, which in
our opinion are the most fundamental ones. Of course, one could go further and study the
possible existence of other analogues for Riesz spaces. There is also a lot of theory known for
reflexive subsets of Lb(H). Do these results also have an analogue for Riesz spaces?
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11 Discussion of related literature

In paragraph 1.2 of the introduction we have given a short overview of related work on the
subject. In this section we will discuss it more thoroughly, moreover we will compare it to our
own results.

It is a well-known problem, whether an analogue of the von Neumann Bicommutant Theo-
rem holds for a set of operators A on a vector space X, which is not a priori a Hilbert space.
We have been studying this question for X a Dedekind complete Riesz space. However, all
literature on the subject treats the case for X a Banach space. Moreover, there are multiple
ways to define the bicommutant in Hilbert spaces, since D ′′ and P(D ′)′ agree for a ∗-closed
subset D of the bounded operators on a Hilbert space. We decided to define the bicommutant
by (A ′ ∩ Orth(E))′, whereas all literature considers the classical bicommutant A ′′. Thus, in
the overview of related work given below we take X a Banach space and consider the classical
bicommutant A ′′ of a subset A ⊂ Lb(X).

The first direction we will touch upon, is closely linked to our work. Here X is a Banach
lattice, which is in particular a Riesz space. We consider the bicommutant A ′′ for subsets
A consisting of the multiplication operators in Lb(X). Here the commutant is defined by
A ′ = {S ∈ Lb(X) : ST = TS for all T ∈ A }. In [PR] de Pagter and Ricker take the space X to
be the Banach lattice Lp(µ) for 1 ≤ p ≤ ∞. Here (Ω,Σ, µ) is a Maharam measure space, mean-
ing that the associated measure algebra is a complete Boolean algebra and µ has the property
that, whenever µ(F ) > 0, there is E ∈ Σ with E ⊂ F such that 0 < µ(E) < ∞. The following
bicommutant theorems are derived [PR].

11.1 Theorem (Case 1 ≤ p <∞). Let (Ω,Σ, µ) be a Maharam measure space and 1 ≤ p <∞.
Denote by Mφ for φ ∈ L∞(µ) the multiplication operator on Lp(µ). Let U be a subalgebra of
L∞(µ). The bicommutant of the subset

Rp(U ) := {Mφ : φ ∈ U } ⊂ Lb(Lp(µ))

is given by Rp(D), where D is the closure of U ∪{1} in the weak-star topology σ(L∞(µ), L1(µ)).

11.2 Theorem (Case p =∞). Let (Ω,Σ, µ) be a Maharam measure space and p =∞. Denote
by Mφ for φ ∈ L∞(µ) the multiplication operator on Lp(µ). Let U be a subalgebra of L∞(µ).
The bicommutant of the subset

Rp(U ) := {Mφ : φ ∈ U } ⊂ Lb(Lp(µ))

is given by Rp(D), where D is the Dedekind closure of U ∪ {1}.

Note the Dedekind closure of a set U ⊂ L∞(µ) is given by

{f ∈ L∞(µ) : sup{g ∈ U : g ≤ f} = inf{g ∈ U : f ≤ g}}.

In [KI] Kitover takes the Banach lattice X equal to the continuous functions C(K) on K. The
following bicommutant theorem is derived

11.3 Theorem. Let K be a metrizable, connected and locally connected compact space. Take
f ∈ C(K) and let Mf be the corresponding multiplication operator on C(K). The bicommutant
{Mf}′′ equals the closure of the algebra generated by Mf and the identity operator I in the strong
operator topology.
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In each of the three theorems above the bicommutant of a set A ⊂ Lb(X) equals the closure of
the algebra generated by A ∪ {I} in a certain topology. Therefore these results are comparable
with 9.21, in case of the order bicommutant, and 2.21, in case of the von Neumann bicommutant.
Furthermore, in [KI] a necessary condition on K, for the above theorem to hold, is derived.

11.4 Theorem. Let K be a metrizable compact space and S be the set of all isolated points
of K. Suppose for all f ∈ C(K) we have that {Mf}′′ equals the strong closure of the algebra
generated by Mf and the identity operator I. Then the set K \ S is connected.

Furthermore, Kitover considers in [KI] the case when the multiplier is either a polynomial or
a non-decreasing (or non-increasing) function. Since the statements are rather technical and
do not contribute to the scope of our discussion here, the interested reader is referred to [KI].
Finally, in [DI] Dieudonné showed there are Banach lattices X and algebras of multiplication
operators A for which a bicommutant theorem does not hold.

Since the Banach lattices Lp(µ) for 1 ≤ p ≤ ∞ as considered are in particular Dedekind com-
plete Riesz spaces, we will investigate the applicability of the above statements to the order
bicommutant. However, there is a fundamental obstruction. The multiplication operators are
contained in the orthomorphism algebra. We have shown in 9.8 that in a Dedekind complete
Riesz space E the order bicommutant (A o)c of a subset A ⊂ Orth(E) always equals Orth(E).
Therefore, the above results are not applicable to the order bicommutant. However, it leads to
an interesting observation: the bicommutants A ′′ and (A o)c = P(A o)c (see 9.6) do not agree in
general, whereas they do coincide for a Hilbert space by 2.11. Finally, it is worthwhile noticing
that in the proofs of the above facts, besides the algebraic and topological structure, the lattice
structure on the Banach space X is used. A structure we also considered in our study of the
order bicommutant.

Another direction in which research on an analogue of the von Neumann Bicommutant Theorem
has evolved, is the case where X is a reflexive Banach space. Here there is no use of an order
structure. Instead, some theory about modules is used. Let U be a unital Banach algebra.
Recall a left U -module X is cyclic, if there exists x ∈ X with U x dense in X. Further, a left
U -module X is self-generating, if for each closed cyclic submodule K ⊂ X the linear span of
{T (X) : T : X → K is an U -module homomorphism} is dense in K. In [DA] Daws takes A to
be the range of a bounded homomorphism, from a unital Banach algebra into Lb(X). We state
the results from this article.

11.5 Theorem. Let U be a unital Banach algebra and X a reflexive Banach space. Let π :
U → Lb(X) a bounded homomorphism. Use π to turn E into a left U -module. Suppose the left
U -module `2(E) is self-generating. Then π(U )′′ agrees with the weak-star closure of π(U ) in
Lb(E).

We see the bicommutant of a unital algebra A equals the closure of A in a certain topology.
Again, this can be compared with results 9.21 and 2.21. Furthermore, given a unital dual
Banach algebra U , there exists a reflexive Banach space X and an isometric homomorphism
U → Lb(X) such that the range A equals its own bicommutant.

11.6 Theorem. Let U be a unital dual Banach algebra. There exists a reflexive Banach space
X and an isometric weak-star-continuous homomorphism π : U → Lb(X) such that π(U )′′ =
π(U ).
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In the last considered direction of research X is an arbitrary Banach space. The projections
P(X) on X can be ordered by range inclusion. A Boolean algebra of projections A ⊂ P(X)
is σ-complete, if for each sequence {Eα}α in A the projections on the closed linear span of
{EnX : n ∈ N} and onto

⋂
nEnX are in A . For a complete discussion on σ-completeness see

[BA]. For the bicommutant of a σ-complete Boolean algebra of projections, there are several
bicommutant theorems. We first consider the theorems stated by de Pagter and Ricker in [PI].

11.7 Theorem. Let X a Banach space and A ⊂ Lb(X) be an atomic, σ-complete Boolean alge-
bra of projections. Then the bicommutant A equals the strong operator closed algebra generated
by A .

The above result did suggest us to look at an order bicommutant theorem 9.19 for atomic Riesz
spaces. Another bicommutant theorem is obtained, when looking at the so called Lat(A ′)-
condition. A subset A ⊂ Lb(X) satisfies the Lat(A ′)-condition, if every closed A ′-invariant
subspace, is the range of some projection from the commutant A ′.

11.8 Theorem. Let X a Banach space and let A ⊂ Lb(X) a σ-complete Boolean algebra
of projections, satisfying the Lat(A ′)-condition. Then the bicommutant A ′′ equals the strong
operator closed algebra generated by A .

Again the above two results may be compared with 9.21 and 2.21. In [PI] de Pagter and Ricker
also give an example of a σ-complete Boolean algebra of projections, which does not satisfy the
Lat(A ′)-condition, but the bicommutant A ′′ equals the strong operator closed algebra generated
by A . So the Lat(A ′)-condition is sufficient, but not necessary. In the article [RO] Rosenthal
and Sourour consider the above setting with the additional assumption that the Boolean algebra
is cyclic. Observe a Boolean algebra A is cyclic, if there exists a vector x ∈ X such that A x is
all of X. The following result is stated in [RO].

11.9 Theorem. Let X be a Banach space and A ⊂ Lb(X) a strongly closed algebra of operators,
which contains a σ-complete Boolean algebra of projections. If every invariant subspace of A
has an invariant complement, then A ′′ is equal to A . Moreover, A is reflexive.

Indeed a bicommutant theorem is retrieved as in 9.19 and 2.19. Moreover, the reflexivity state-
ment is inferred as in 9.11 and 2.14. The fact that every invariant subspace of A has an invariant
complement, may be compared with -invariance and the -property for Hilbert spaces, respec-
tively Riesz spaces. This result is generalized to quasi-cyclic Boolean algebras of projections
in [DB]. Observe that in our case it is also possible to take the order bicommutant of a set
of projections. However, 9.8 shows (A o)c equals Orth(E) in that case. So these theorems on
the bicommutant of a Boolean algebra of projections do not have an analogue for the order
bicommutant.
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